首页> 外文学位 >Experimental Study of Main Gas Ingestion and Purge Gas Egress Flow in Model Gas Turbine Stages.
【24h】

Experimental Study of Main Gas Ingestion and Purge Gas Egress Flow in Model Gas Turbine Stages.

机译:模型燃气轮机阶段主进气和吹扫气体出口流的实验研究。

获取原文
获取原文并翻译 | 示例

摘要

Efficient performance of gas turbines depends, among several parameters, on the mainstream gas entry temperature. At the same time, transport of this high temperature gas into the rotor-stator cavities of turbine stages affects the durability of rotor disks. This transport is usually countered by installing seals on the rotor and stator disk rims and by pressurizing the cavities by injecting air (purge gas) bled from the compressor discharge. The configuration of the rim seals influences the magnitude of main gas ingestion as well as the interaction of the purge gas with the main gas. The latter has aerodynamic and hub endwall heat transfer implications in the main gas path.;In the present work, experiments were performed on model single-stage and 1.5-stage axial-flow turbines. The turbines featured vanes, blades, and rim seals on both the rotor and stator disks. Three different rim seal geometries, viz., axially overlapping radial clearance rim seals for the single-stage turbine cavity and the 1.5-stage turbine aft cavity, and a rim seal with angular clearance for the single-stage turbine cavity were studied. In the single-stage turbine, an inner seal radially inboard in the cavity was also provided; this effectively divided the disk cavity into a rim cavity and an inner cavity. For the aft rotor-stator cavity of the 1.5-stage turbine, a labyrinth seal was provided radially inboard, again creating a rim cavity and an inner cavity. Measurement results of time-average main gas ingestion into the cavities using tracer gas (CO2), and ensemble-averaged trajectories of the purge gas flowing out through the rim seal gap into the main gas path using particle image velocimetry are presented.;For both turbines, significant ingestion occurred only in the rim cavity. The inner cavity was almost completely sealed by the inner seal, at all purge gas flow rates for the single-stage turbine and at the higher purge gas flow rates for 1.5-stage turbine. Purge gas egress trajectory was found to depend on main gas and purge gas flow rates, the rim seal configuration, and the azimuthal location of the trajectory mapping plane with respect to the vanes.
机译:在几个参数中,燃气轮机的有效性能取决于主流进气温度。同时,这种高温气体进入涡轮级的定子转子腔会影响转子盘的耐用性。通常通过在转子和定子盘的轮缘上安装密封件并通过注入从压缩机排放口排出的空气(吹扫气)对空腔加压来抵消这种运输。轮缘密封件的构造影响主要气体的摄入量以及吹扫气体与主要气体的相互作用。后者在主要气体路径中具有空气动力学和轮毂端壁传热的意义。;在当前工作中,对模型单级和1.5级轴流式涡轮机进行了实验。涡轮在转子和定子盘上均具有叶片,叶片和轮缘密封件。研究了三种不同的轮辋密封几何形状,即用于单级涡轮腔和1.5级涡轮后腔的轴向重叠径向间隙轮辋密封件,以及用于单级涡轮腔的具有角间隙的轮辋密封件。在单级涡轮机中,还提供了在腔体内径向内侧的内部密封件。这有效地将磁盘腔划分为边缘腔和内部腔。对于1.5级涡轮机的后定子定子腔,在径向内侧设有迷宫式密封,再次形成了轮辋腔和内腔。给出了使用示踪气体(CO2)时平均主气体吸入腔体的测量结果,以及使用粒子图像测速仪通过边缘密封间隙流入主气体路径的吹扫气体的总体平均轨迹的测量结果。涡轮机中,仅在轮辋腔中发生了重大的摄入。在单级涡轮机的所有吹扫气流速和1.5级涡轮机的较高吹扫气流速下,内腔几乎完全被内部密封件密封。发现吹扫气体的出口轨迹取决于主要气体和吹扫气体的流量,轮辋密封结构以及轨迹映射平面相对于叶片的方位角位置。

著录项

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.
  • 年度 2010
  • 页码 103 p.
  • 总页数 103
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号