首页> 外文学位 >Numerical solution of the forward problem in electroencephalography.
【24h】

Numerical solution of the forward problem in electroencephalography.

机译:脑电正向问题的数值解。

获取原文
获取原文并翻译 | 示例

摘要

The localization of areas of excessive electrical activity in the human brain system by multichannel electroencephalography (EEG) recordings is one of the most important problems in Clinical Neurophysiology. This activity can be approximated by equivalent dipole [15], which generates the potential distribution all over the brain system. The essential part of the source localization procedure is the forward problem solution, i.e. computation of the potential on the surface of the head given the location and orientation of the dipole. In this work, the forward problem is solved with the use of the Finite Volume Method (FVM). The implementation of the FVM is done in such a way that the same algorithm can be applied for the realistic head model made by using Magnetic Resonance Imaging (MRI) scans of the head of the real patient. The main objectives of the research are assessment of the errors of the FVM modeling and computational issues such as deflation, properties of deflated matrix and acceleration of computations. The forward problem acceleration is especially important in practice, hence alternative approaches for the solution of the forward problem would be interesting. The Finite Volume Method is implemented in such a way that the deflated matrix of the linear system corresponding to the forward problem is symmetric and positive definite. These properties allow the use of the Conjugate Gradient Method with Polynomial Preconditioning and essential acceleration of the computations. The errors of the numerical solution were studied using analytical solutions for three-shell geometry. The realistic three-shell solution derived in this work allows to separate the source and sink of the equivalent dipole. This is essential for the FVM tests, as with this method the source and sink cannot be infinitely close together. As the radial dipole gets closer to the skull, the error of FVM grows. It can be reduced either with the higher resolution grids or with better domain decomposition algorithms. The idea of analytical matrix inversion developed for one, two and thri-dimensional systems of cubic finite volume elements can have potential for a rapid solution of the forward problem provided that it can be extended for deformed and nonuniform cases.
机译:通过多通道脑电图(EEG)记录在人脑系统中过度电活动区域的定位是临床神经生理学中最重要的问题之一。可以用等效偶极子[15]来近似这种活动,偶极子会在整个大脑系统中产生电位分布。源定位过程的重要部分是正向问题解决方案,即在给定偶极子的位置和方向的情况下计算磁头表面上的电势。在这项工作中,使用有限体积法(FVM)解决了前向问题。 FVM的实现方式是,可以通过对实际患者的头部进行磁共振成像(MRI)扫描,将相同的算法应用于实际的头部模型。研究的主要目的是评估FVM建模的误差和诸如放气,放气矩阵的性质和计算加速之类的计算问题。前向问题加速在实践中尤其重要,因此解决前向问题的替代方法将很有趣。有限体积法的实现方式是,与正向问题相对应的线性系统的紧缩矩阵是对称且正定的。这些属性允许将共轭梯度方法与多项式预条件结合使用,并显着加快计算速度。使用三壳几何解析解研究了数值解的误差。通过这项工作得出的现实的三壳解决方案可以分离等效偶极子的源极和吸收极。这对于FVM测试至关重要,因为使用这种方法,源和宿不能无限靠近。随着径向偶极子越来越靠近头骨,FVM的误差会增加。可以使用更高分辨率的网格或更好的域分解算法来减少它。为一维,二维和立方有限元三次元系统开发的解析矩阵求逆的想法可以为正解的快速求解提供条件,只要它可以扩展到变形和不均匀的情况。

著录项

  • 作者

    Agapov, Vladislav E.;

  • 作者单位

    University of Alberta (Canada).;

  • 授予单位 University of Alberta (Canada).;
  • 学科 Mathematics.; Engineering Biomedical.; Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 120 p.
  • 总页数 120
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学 ; 生物医学工程 ; 神经科学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号