首页> 外文学位 >Model-driven development and utilization of an oxygen-independent platform strain.
【24h】

Model-driven development and utilization of an oxygen-independent platform strain.

机译:由模型驱动的氧独立平台菌株的开发和利用。

获取原文
获取原文并翻译 | 示例

摘要

The microbial production of commodity chemicals is a promising avenue for the development of sustainable processes for the utilization of renewable resources and reducing our dependency on foreign oil. In order to become cost and energy effective, the process must utilize an organism that is optimized for production of a number of reduced by-products from variety of feedstocks. Escherichia coli is one of the most commonly used host organisms for metabolic engineering and overproduction of metabolites due to its metabolic versatility, amenability to genetic manipulation, and the ability to produce a wide variety of reduced by-products such as bio-ethanol and organic acids. E. coli has also been extensively characterized with respect to its metabolic physiology. It is capable of surviving in a variety of environmental conditions, such as oxic and anoxic; however the different growth rates and different secretion products under oxic and anoxic conditions poses a significant challenge for metabolic engineering processes in which environmental perturbations will influence the outcome of the bio-catalytic process. Therefore, the utilization of the oxygen-independent strain for bio-catalysis eliminates the need for the stringent control over the fermentation environment with respect to oxygenation, thus significantly reducing the cost of the entire bio-catalytic process. Therefore, it is of interest to develop an E. coli strain incapable of oxygen utilization, to be used as a platform strain for metabolic engineering.;Here, I present the work aimed at the (i) development of an oxygen-independent platform strain, (ii) understanding of its physiological behavior, and (iii) utilization of this strain for metabolic engineering applications. Such a strain can be useful for the overproduction of commodity chemicals under various conditions independent of oxygen supply and optimization of anaerobic metabolic engineering designs using adaptive evolution under oxic conditions. The results show that upon the removal of the oxygen-utilization pathway, the ECOM4 ( Escherichia coli Cytochrome Oxidase Mutant 4) strain was unable to undergo an aerobic-anaerobic shift and exhibited similar phenotypes under both conditions with D-lactic acid as a sole growth-associated by-product. Moreover, I show that the ECOM4 strain can be used for the overproduction of organic and amino acids from renewable resources.
机译:商品化学品的微生物生产是开发利用可再生资源和减少我们对外国石油的依赖的可持续过程的有前途的途径。为了使成本和能源效率更高,该过程必须利用一种经过优化的有机体,该有机体可用于从各种原料中生产多种还原副产物。大肠埃希氏菌由于其代谢通用性,对遗传操作的适应性以及能够产生多种还原副产物(如生物乙醇和有机酸)的能力,因此是代谢工程和代谢产物过量生产的最常用宿主生物之一。 。大肠杆菌还具有广泛的代谢生理学特征。它能够在多种环境条件下生存,例如有氧和缺氧;然而,在有氧和无氧条件下,不同的生长速率和不同的分泌产物对代谢工程过程提出了重大挑战,在该过程中,环境扰动将影响生物催化过程的结果。因此,利用不依赖氧的菌株进行生物催化消除了对发酵环境的关于氧合的严格控制的需要,从而显着降低了整个生物催化过程的成本。因此,开发一种不能利用氧气的大肠杆菌菌株作为代谢工程的平台菌株是很有意义的;在此,我介绍了旨在(i)开发不依赖氧气的平台菌株的工作。 ;(ii)了解其生理行为,以及(iii)将该菌株用于代谢工程应用。这种菌株可用于在各种条件下与氧气供应无关的商品化学品的过量生产,以及在有氧条件下使用适应性进化来优化厌氧代谢工程设计的方法。结果表明,在去除氧气利用途径后,ECOM4(大肠杆菌细胞色素氧化酶突变体4)菌株无法进行需氧厌氧转化,并且在两种条件下均表现出相似的表型,其中以D-乳酸为唯一生长-相关的副产品。此外,我证明ECOM4菌株可用于可再生资源中过量生产有机和氨基酸。

著录项

  • 作者

    Portnoy, Vasiliy A.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Engineering Biomedical.;Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号