首页> 外文学位 >Molecular-level chemistry of model single-crystal oxide surfaces with model halogenated compounds.
【24h】

Molecular-level chemistry of model single-crystal oxide surfaces with model halogenated compounds.

机译:具有模型卤化物的模型单晶氧化物表面的分子水平化学。

获取原文
获取原文并翻译 | 示例

摘要

Synchrotron-based X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption (TPD) and low energy electron diffraction (LEED) have been used to investigate, at a molecular level, the chemistry of different terminations of single crystal iron-oxide surfaces with probe molecules (CCl4 and D2O). Comparisons of the reactivity of these surfaces towards CCl4, indicate that the presence of an uncapped surface Fe cation (strong Lewis acid site) and an adjacent oxygen site capped by that cation can effect the C-Cl bond cleavage in CCl4, resulting in dissociatively adsorbed Cl-adatoms and carbon-containing fragments. If in addition to these sites, an uncapped surface oxygen (Lewis base) site is also available, the carbon-containing moiety can then move that site, coordinate itself with that uncapped oxygen, and stabilize itself. At a later step, the carbon-containing fragment may form a strong covalent bond with the uncapped oxygen and may is not available to stabilize the carbon-containing fragment, the surface coordination will not occur and upon the subsequent thermal annealing of the surface the Cl-adatoms and the carbon-containing fragments will recombine and desorb as CCl4. Finally, the presence of surface deuteroxyls blocking the strong Lewis acid and base sites of the reactive surface, passivates this surface. Such a deuteroxylated surface will be unreactive towards CCl 4. Such a molecular level understanding of the surface chemistry of metal-oxides will have applications in the areas of selective catalysis, including environmental catalysis, and chemical sensor technology.
机译:基于同步加速器的X射线光电子能谱(XPS),程序升温脱附(TPD)和低能电子衍射(LEED)已在分子水平上研究了单晶氧化铁表面不同末端的化学反应与探针分子(CCl 4 和D 2 O)结合。这些表面对CCl 4 的反应性的比较表明,未封端的表面Fe阳离子(强路易斯酸位)和被该阳离子封端的相邻氧位的存在会影响C-Cl键在CCl 4 中发生裂解,导致解离吸附的Cl-原子和含碳碎片。如果除了这些位点以外,还可以使用未封端的表面氧(路易斯碱)位,则含碳部分可以移动该位点,使其与未封端的氧配位并使其稳定。在随后的步骤中,含碳片段可能与未封端的氧形成强共价键,并且可能无法稳定含碳片段,因此不会发生表面配位,并且在随后的表面热退火后,Cl原子和含碳片段将重组并解吸为CCl 4 。最后,表面氘代羟基的存在会阻断强路易斯酸和反应性表面的碱位,从而使该表面钝化。这种氘化的表面将对CCl 4 没有反应。对金属氧化物表面化学的这种分子水平的理解将在选择性催化领域中应用,包括环境催化和化学传感器技术。

著录项

  • 作者

    Adib, Kaveh.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 231 p.
  • 总页数 231
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号