首页> 外文学位 >Vortical flow dynamics and acoustic response of gas-turbine swirl-stabilized injectors.
【24h】

Vortical flow dynamics and acoustic response of gas-turbine swirl-stabilized injectors.

机译:燃气轮机旋流稳定喷油器的涡流动力学和声学响应。

获取原文
获取原文并翻译 | 示例

摘要

The present research focuses on a time-accurate numerical simulation and analysis of the vortical flow dynamics and acoustic characteristics of gas-turbine swirl-stabilized injectors with different swirl numbers. The primary objectives are (1) to establish a comprehensive numerical code, validated against experimental data, to simulate turbulent swirling flows; (2) to explore the dominant physical processes and mechanisms involved in such flows; (3) to study the effects of inlet conditions, such as swirl number, on flow structures and their dynamic evolution; and (4) to investigate the acoustic response of injector dynamics to externally imposed excitation.;The theoretical formulation is based on the complete conservation equations of mass, momentum, and energy in three dimensions. Turbulence closure is achieved by means of a large-eddy-simulation (LES) technique. The governing equations and associated boundary conditions are solved using a finite-volume approach. Both a four-step Runge-Kutta scheme and an Adam-Bashforth predictor-corrector scheme are implemented for temporal integration. A fourth-order central difference scheme along with sixth-order artificial dissipation is employed for spatial discretization of the convective terms. The code is further equipped with a multi-block domain decomposition feature to facilitate parallel processing in a distributed computing environment using the Massage Passing Interface (MPI) library.;As part of the model validation effort, the numerical analysis is first implemented to study the turbulent swirling flows in a dump chamber with two different inlet swirl numbers. Good agreement with experimental data is obtained in terms of mean velocities, turbulence intensities, and turbulent kinetic energy. Results show significant effects of the swirl number on the flow evolution. The swirl number not only affects the time-mean topology of the flowfield, such as vortex breakdown, but also strongly influences the dynamic evolution of the flowfield and acoustic resonance mode of the chamber.;After validation, the analysis is implemented to study the vortical flow dynamics in a gas-turbine swirl-stabilized injector as the second part of the present effort. In this flow configuration, air is radially delivered into the injector through three sets of swirl vanes, which are counter-rotating with each other. Several instability modes with well-defined frequencies, such as vortex breakdown, the Kelvin-Helmholtz instabilities in both the streamwise and azimuthal directions, helical instability, centrifugal instability, and their interactions/competitions, are observed in the flowfields. The flowfield is well organized at a low swirl number, and the vortex shedding due to the Kelvin-Helmholtz instability is the dominant mechanism for driving flow oscillations. The flow structure, however, becomes much more complex at a high swirl number, with each sub flow regime dominated with different frequencies and flow patterns.;The dynamic response of the injector flow to externally imposed oscillations is examined over a broad range of forcing frequency from 400 to 13,000 Hz. The response can be conveniently characterized in terms of the acoustic admittance and mass transfer functions at the exit. Results can be used as an inlet boundary condition in analyzing the combustion instability characteristics of the main chamber. The influences of external excitations on the injector mean flow structures and turbulence properties appear to be limited. However, the unsteady flow evolution in the injector, such as the instantaneous mass flux and pressure distributions, are significantly modulated in both the spatial and spectral domains.
机译:本研究的重点是对不同旋流数的燃气轮机旋流稳定喷油器的旋流动力学和声学特性进行时间精确的数值模拟和分析。主要目标是(1)建立一个综合数字代码,并根据实验数据进行验证,以模拟湍流回旋流; (2)探索此类流程所涉及的主要物理过程和机制; (3)研究入口条件,例如旋流数,对流动结构及其动态演化的影响; (4)研究喷油器动力学对外部施加的激励的声学响应。理论公式基于三维的质量,动量和能量的完整守恒方程。湍流闭合是通过大涡模拟(LES)技术实现的。控制方程和相关的边界条件使用有限体积法求解。四步Runge-Kutta方案和Adam-Bashforth预测器-校正器方案均用于时间积分。对流项的空间离散采用了四阶中心差分方案和六阶人工耗散。该代码还配备了多块域分解功能,以使用Massage Passing Interface(MPI)库促进分布式计算环境中的并行处理。;作为模型验证工作的一部分,首先进行了数值分析以研究湍流在具有两个不同入口涡流数的排料室中流动。在平均速度,湍流强度和湍动能方面,与实验数据具有良好的一致性。结果表明,旋流数对流动演变有显着影响。旋流数不仅影响流场的时间平均拓扑,例如涡旋破坏,而且还强烈影响流场的动态演化和腔室的声共振模式。燃气轮机旋流稳定喷油器中的流动动力学是本研究的第二部分。在这种流动配置中,空气通过三组彼此反向旋转的涡旋叶片径向输送到喷射器中。在流场中观察到了几种具有明确定义的频率的不稳定性模式,例如涡旋破坏,沿水流方向和方位角的开尔文-亥姆霍兹不稳定性,螺旋不稳定性,离心不稳定性及其相互作用/竞争。流场组织良好,涡旋数低,由于开尔文-亥姆霍兹不稳定性而引起的涡旋脱落是驱动流动振荡的主要机制。但是,在高旋流数下,流动结构变得更加复杂,每个子流动状态都以不同的频率和流动模式主导。;在很宽的强迫频率范围内检查了喷射器流动对外部施加的振动的动态响应从400到13,000 Hz可以根据出口处的声导率和传质函数方便地表征响应。结果可以用作分析主室燃烧不稳定性特征的入口边界条件。外部激励对喷射器平均流动结构和湍流特性的影响似乎是有限的。但是,喷油器中的非稳态流动演变(例如瞬时质量通量和压力分布)在空间和光谱域中都得到了显着调节。

著录项

  • 作者

    Wang, Shanwu.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 212 p.
  • 总页数 212
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号