首页> 外文学位 >Detailed main bearing hydrodynamic characteristics for crankshaft-block dynamic interaction in internal combustion engines.
【24h】

Detailed main bearing hydrodynamic characteristics for crankshaft-block dynamic interaction in internal combustion engines.

机译:详细的主轴承流体动力特性,用于内燃机中的曲轴箱动态相互作用。

获取原文
获取原文并翻译 | 示例

摘要

The current research contributes to the computational study of the crankshaft-block dynamic interaction through the development of two detailed main bearing models for this system to include effects of hydrodynamic characteristics. The bearing hydrodynamic models offer high computational efficiency without sacrificing the accuracy. The differential governing equations are solved numerically using the finite element and the finite difference approaches without imposing any limitations in the number of degrees of freedom to accommodate for the structural deformation of the bearing and the journal tilting. The finite element approach and the finite difference approach are implemented as alternatives to achieve the highest efficiency through comparison.;In addition a new condensation procedure for reducing the resulting cross-coupled terms in the fluid film stiffness matrix and the fluid film damping matrix is developed. Thus, savings in memory and CPU requirements are achieved without compromising the accuracy of the computations.;A data mapping procedure is developed in order to allow transformation of the structural deformation and the hydrodynamic characteristics between the mesh of the structural model and the mesh of the model for the main bearings when the two models have incompatible mesh densities. The data mapping algorithm allows to perform accurate calculations of the hydrodynamic characteristics in the high-density mesh of the bearing model without imposing an increase in the required structural mesh density.;The analytical and numerical validations of the new bearing models are presented. The new developments are validated by comparing results from the new algorithms to an established, sophisticated, but computationally intensive bearing solver. The computational savings achieved by the new developments are also identified.;The detailed hydrodynamic bearing model developed in this work is incorporated into a system level analysis including the coupled rigid and flexible body dynamic of the crankshaft and flexible engine block. Finally, the resulting system level analysis was utilized to study dynamic behavior of a typical V6 engine for automotive applications. A side-by-side comparison of the results for bearing reaction forces was presented to demonstrate the impact of the hydrodynamic bearing model on the quality of the solution.
机译:当前的研究通过为该系统开发两个详细的主轴承模型以包括水动力特性的影响,为曲轴-缸体动力相互作用的计算研究做出了贡献。轴承流体动力学模型在不牺牲精度的情况下提供了高计算效率。使用有限元和有限差分方法可对微分控制方程进行数值求解,而无需对自由度的数量施加任何限制以适应轴承的结构变形和轴颈倾斜。可以采用有限元法和有限差分法作为替代方案,以通过比较获得最高效率。此外,还开发了一种新的冷凝程序,用于减少液膜刚度矩阵和液膜阻尼矩阵中的交叉耦合项。 。因此,在不损害计算精度的情况下实现了内存和CPU需求的节省。开发了一种数据映射程序,以允许在结构模型的网格和模型的网格之间转换结构变形和流体动力特性。当两个模型的网格密度不兼容时,将其作为主轴承的模型。数据映射算法可以在不增加所需的结构网格密度的情况下,对轴承模型的高密度网格中的流体力学特性进行精确计算。提出了新轴承模型的分析和数值验证。通过将新算法的结果与成熟,复杂但计算量大的轴承求解器进行比较,可以验证新开发成果。还确定了新开发成果所节省的计算量。这项工作中开发的详细的动压轴承模型已纳入系统级分析,包括曲轴和挠性发动机体的刚体和挠性体动力学耦合。最后,所得的系统级分析被用于研究汽车应用中典型V6发动机的动态性能。提出了轴承反作用力结果的并排比较,以证明流体动力轴承模型对解决方案质量的影响。

著录项

  • 作者

    Ebrat, Omidreza.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Automotive.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术及设备;机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:46:28

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号