首页> 外文学位 >Role of the phosphorylation-dependent CREB/CBP interaction in transcriptional activation by CREB.
【24h】

Role of the phosphorylation-dependent CREB/CBP interaction in transcriptional activation by CREB.

机译:磷酸化依赖性CREB ​​/ CBP相互作用在CREB转录激活中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Environmental stimuli contribute to changes in gene expression by activating intracellular signaling pathways which propagate the stimulus from the plasma membrane to the nucleus. The cAMP response element binding protein (CREB) is one of the best characterized transcription factors whose activity is regulated by phosphorylation in response to extracellular signals. A wide range of extracellular stimuli all activate CREB by inducing CREB phosphorylation at a specific residue, Ser-133. The phosphorylation of CREB at Ser-133 induces the association of CREB with a coactivator protein termed the CREB-binding protein (CBP). Specifically, phosphorylation of CREB Ser-133 allows for the association of the kinase-inducible domain (KID) of CREB with a region of CBP termed the KIX domain.; The primary goal of my Thesis work has been to more clearly understand the role of CBP in stimulus-induced CREB activation. To this end we developed a novel E. coli-based two-hybrid system that facilitates the analysis of phosphorylation-dependent protein-protein interactions. Using the bacterial two-hybrid system, we were able to examine the critical structural features within the CREB KID and the CBP KIX domain that contribute to their phosphorylation-dependent interaction.; We also adapted the E. coli two-hybrid system for selection-based assays and employed this selection-based system to identify a single point substitution in the KIX domain of CBP that increases the strength of the KID/KIX interaction. When placed in the context of full-length CBP, this substitution resulted in an increase in the ability of CBP to activate CREB-dependent transcription in mammalian cells. Likewise, a point substitution in the KIX domain that weakens the KID/KIX interaction resulted in a corresponding decrease in the ability of CBP to activate CREB-dependent transcription in mammalian cells. We conclude that the magnitude of CREB-dependent transcriptional activation reflects the strength of the interaction between CREB and CBP. In addition, we found that recruitment of CBP to CREB in the absence of extracellular stimulation is sufficient to promote CREB-dependent transcription, suggesting that the phosphorylation of Ser-133 and subsequent recruitment of CBP to CREB is the critical step at which certain signals, including those that lead to an elevation of CAMP, regulate CREB-dependent transcription.; Transcription factor complexes can also regulate transcription through modifying chromatin structure in the vicinity of the target gene. Accordingly, we investigated the importance of the intrinsic histone acetyltransferase (HAT) activity of CBP in promoting CREB-dependent transcription. We found that although the intrinsic HAT activity of CBP is not required for stimulus-induced CREB activation, this HAT activity is important for the ability of CBP to promote CREB-dependent transcription in the absence of a stimulus. In addition, we examined the role of histone deacetylases (HDACs) in the regulation of CREB-dependent gene expression. We found that pharmacologic inhibition of HDAC activity resulted in an increase in CRE-dependent transcription in several cell types. Consistent with these observations, we observed that CREB is physically associated with HDAC activity under these conditions. These findings suggest that regulation of HDAC activity may be an important mechanism for controlling the expression of CREB target genes.; Finally, we propose that the E. coli two-hybrid system that we have developed can be used to study, in an efficient and quantitative manner, any kinase-dependent protein-protein interaction. This system should prove useful both for elucidating the structural features of known signaling molecules that allow for their phosphorylation-induced interaction as well as for identifying new members within a particular signaling cascade.
机译:环境刺激通过激活细胞内信号传导途径促进基因表达的改变,所述细胞内信号传导途径将刺激从质膜传播到细胞核。 cAMP反应元件结合蛋白(CREB)是最有特征的转录因子之一,其活性受细胞外信号的磷酸化调节。广泛的细胞外刺激均通过在特定残基Ser-133上诱导CREB磷酸化来激活CREB。 CREB在Ser-133处的磷酸化诱导CREB与称为CREB结合蛋白(CBP)的共激活蛋白缔合。具体而言,CREB ​​Ser-133的磷酸化使得CREB的激酶诱导结构域(KID)与称为KIX结构域的CBP区域缔合。我论文工作的主要目的是更清楚地了解CBP在刺激性CREB激活中的作用。为此,我们开发了新颖的 E。基于大肠杆菌的双杂交系统,有助于分析磷酸化依赖性蛋白-蛋白相互作用。使用细菌双杂交系统,我们能够检查CREB ​​KID和CBP KIX域内的关键结构特征,这些结构特征有助于它们的磷酸化依赖性相互作用。我们还改编了 E。大肠杆菌双杂交系统用于基于选择的测定,并使用该基于选择的系统来识别CBP的KIX域中的单点取代,从而增强KID / KIX相互作用的强度。当放在全长CBP的背景下时,这种取代导致CBP激活哺乳动物细胞中CREB依赖性转录的能力增强。同样,削弱KID / KIX相互作用的KIX域中的点替换导致CBP激活哺乳动物细胞中CREB依赖性转录的能力相应降低。我们得出结论,CREB依赖性转录激活的幅度反映了CREB和CBP之间相互作用的强度。此外,我们发现在没有细胞外刺激的情况下将CBP募集到CREB足以促进CREB依赖的转录,这表明Ser-133的磷酸化和随后CBP募集到CREB是某些信号的关键步骤,包括那些导致CAMP升高,调节CREB依赖性转录的物质。转录因子复合物还可以通过修饰靶基因附近的染色质结构来调节转录。因此,我们调查了内在的组蛋白乙酰基转移酶(HAT)活性在促进CREB依赖性转录中的重要性。我们发现尽管刺激诱导的CREB激活不需要CBP的内在HAT活性,但是该HAT活性对于CBP在没有刺激的情况下促进CREB依赖性转录的能力很重要。此外,我们检查了组蛋白脱乙酰基酶(HDACs)在调节CREB依赖性基因表达中的作用。我们发现,HDAC活性的药理抑制作用导致几种细胞类型中CRE依赖性转录的增加。与这些观察结果一致,我们观察到在这些条件下,CREB与HDAC活性在物理上相关。这些发现表明,HDAC活性的调节可能是控制CREB靶基因表达的重要机制。最后,我们建议使用 E。我们开发的大肠杆菌双杂交系统可用于以有效和定量的方式研究任何激酶依赖性蛋白-蛋白相互作用。该系统应被证明对于阐明允许其磷酸化诱导的相互作用的已知信号分子的结构特征以及鉴定特定信号级联内的新成员都是有用的。

著录项

  • 作者

    Shaywitz, Adam Jeremy.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Biology Molecular.; Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 178 p.
  • 总页数 178
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;神经科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号