首页> 外文学位 >Modeling and field constraints on glacier dynamics, erosion, and alpine landscape evolution (Alaska).
【24h】

Modeling and field constraints on glacier dynamics, erosion, and alpine landscape evolution (Alaska).

机译:关于冰川动力学,侵蚀和高山景观演变的模型和野外约束(阿拉斯加)。

获取原文
获取原文并翻译 | 示例

摘要

Glacial erosion is an important but poorly understood agent of alpine landscape evolution. Development of the glacial longitudinal profile was examined with a numerical model, while glacier sliding and its control were the subjects of a field project. Seasonal changes in meteorology, ice dynamics, and hydrology were documented at the Bench Glacier, Chugach Range, Alaska. A wave of elevated sliding velocity traveled from the glacier terminus into the accumulation zone at a rate of ∼250 m/day. GPS-measured vertical velocities demonstrated divergence of the glacier surface from the bed, with maximum uplift rates coincident with maximum sliding velocities. Apparent bed separation was approximately 15 cm. Both the sliding wave and surface uplift occurred during a time of positive water storage in the glacier. The data suggest that upglacier propagation of a linked cavity network may explain the observed sliding event.; The effect of glacial erosion over 105–10 6 year timescales was addressed using a numerical model that incorporates the relevant glaciological processes that operate to produce hanging valleys, bedrock steps, overdeepenings and cirques. Simulations always show rapid flattening of the longitudinal profile from a fluvial initial condition. Inclusion of a tributary glacier creates a step in the main valley below the tributary junction that persists over multiple glaciations and generates a hanging valley. Steps result from increased ice discharge below tributary junctions, accommodated by increased ice thickness and sliding. The height of the hanging valley reflects the difference in the time-integrated discharge of ice in the tributary and the trunk valleys. Addition of a plateau allowed incorporation of blowing snow, avalanches, and headwall backwearing processes. In both steady and sawtooth climate scenarios, headwalls increase in length, steepen, and retreat over time. Bedrock cirques form in steady climate simulations only at the end of the model runs; the equilibrium line altitude (ELA) is hundreds of meters above the cirque floor. However, the time-averaged location of the ELA corresponds with the down-glacier cirque position. While the final profiles are relatively insensitive to the erosion rule used, quarrying is most effective near the upper glacier, whereas abrasion reflects the instantaneous pattern of integrated ice discharge.
机译:冰川侵蚀是高山景观演变的重要但鲜为人知的媒介。用数值模型检查了冰川纵向剖面的发育,而冰川滑移及其控制是现场项目的主题。阿拉斯加楚加奇山脉的替补冰川记录了气象,冰动力学和水文学的季节性变化。一道上升的滑动速度波以约250 m / day的速度从冰川末端进入蓄积带。 GPS测量的垂直速度表明冰川表面与河床发散,最大上升速率与最大滑动速度一致。表观床间隔约为15cm。冰川正蓄水期间发生了滑动波和表面隆升。数据表明,连接腔网络的冰川传播可以解释观测到的滑动事件。使用数值模型解决了冰川侵蚀在10 5 –10 -6 年尺度上的影响,该模型结合了相关的冰川过程,这些过程产生了垂悬的山谷,基岩阶跃,超深层和cirque。模拟总是显示从河流初始状态起,纵向轮廓快速变平。包含支流冰川会在支流交汇处下方的主要山谷中形成台阶,该台阶在多个冰川上持续存在并产生悬垂的山谷。台阶的产生是由于支流结下方的冰排出量增加,并因冰厚度增加和滑动而增加。悬谷的高度反映了支流谷和主干谷中时间积分的冰排放差异。高原的增加允许吹雪,雪崩和顶壁回磨过程的结合。在稳定和锯齿状的气候情况下,顶壁的长度都会随着时间的推移而增加,变陡和后退。基岩旋流仅在模型运行结束时才在稳定的气候模拟中形成。平衡线高度(ELA)在太阳剧团地板上方几百米处。但是,ELA的时间平均位置对应于下冰川冰irck位置。虽然最终剖面对所使用的侵蚀规则相对不敏感,但采石在上部冰川附近最为有效,而磨蚀则反映了整体排冰的瞬时模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号