首页> 外文学位 >Nitrification inhibition by heavy metals and chelating agents.
【24h】

Nitrification inhibition by heavy metals and chelating agents.

机译:重金属和螯合剂的硝化抑制作用。

获取原文
获取原文并翻译 | 示例

摘要

Nitrification is generally considered the rate determining step in biological nutrient removal. Although nitrification inhibition by heavy metal and chelating agent has been addressed in the literature, few researchers have quantified the link between inhibition and metal speciation. In this work, the extent of inhibition was calculated from the kinetics of ammonium oxidation and nitrite oxidation. The inhibition correlated well with free metal cation, [Ni 2+] or [Cd2+], but not the total metal concentration.; Batch experiments were conducted to test whether the kinetics of metal partitioning affect nitrification inhibition. Intracellular Zn, Ni, and Cd concentrations continued to increase with time beyond 24 hours after metal addition, whereas intracellular Cu attained equilibrium after 4 hours. An intraparticle diffusion model adequately fit the slow Zn, Ni, and Cd internalization kinetics. The inhibition was not a function of the sorbed metal fraction, rather a correlation with the intracellular Zn, Ni, and Cd concentration was observed. Further, the inhibitory mechanism of Cu was very different from Zn, Ni, and Cd and may involve rapid loss of membrane integrity.; Shock load experiments were conducted in continuous flow bioreactors to compare the metal partitioning and inhibition between batch and continuous metal addition. A mathematical model incorporating metal partitioning adequately fit the metal dynamics in the continuous flow reactors. However, at the same free metal cation concentrations, the inhibition in continuous flow reactor was much higher than in the short-term batch assays, most likely due to the slow kinetics of Zn, Ni and Cd internalization and the effect of continued metal exposure in the continuous flow reactor.; The order of nitrification inhibition by chelating agents in the batch assays was: EDA EDTA DTPA. Inhibition by EDTA was completely relieved by adding appropriate amount of complexing partners (e.g., Ca2+, Mg2+, and Fe3+) whereas inhibition by EDA was not. Inhibition by both EDTA and DTPA, but not EDA, correlated with the depletion of cellular Ca2+. Further, inhibition by EDA was paired with substantial leakage of cellular K+ and disruption of plasma membrane integrity inferred from LIVE/DEAD® Baclight™ bacterial viability assays. Therefore, EDA inhibits via a different operative mechanism than EDTA and DTPA.
机译:硝化通常被认为是生物营养去除过程中的决定速率的步骤。尽管文献中已经讨论了重金属和螯合剂对硝化的抑制作用,但很少有研究人员对抑制作用与金属形态之间的联系进行量化。在这项工作中,从铵氧化和亚硝酸盐氧化的动力学计算了抑制程度。抑制作用与游离金属阳离子[Ni 2 + ]或[Cd 2 + ]密切相关,但与总金属浓度无关。进行分批实验以测试金属分配的动力学是否影响硝化抑制。添加金属后24小时内,细胞内锌,镍和镉的浓度随时间持续增加,而细胞内铜在4小时后达到平衡。粒子内扩散模型足以拟合缓慢的Zn,Ni和Cd内部化动力学。该抑制作用不是所吸附的金属部分的函数,而是观察到与细胞内Zn,Ni和Cd浓度的相关性。此外,Cu的抑制机理与Zn,Ni和Cd完全不同,可能涉及膜完整性的快速丧失。在连续流生物反应器中进行了冲击载荷实验,以比较金属在分批添加和连续添加之间的分配和抑制。结合了金属分配的数学模型充分适合了连续流反应器中的金属动力学。但是,在相同的游离金属阳离子浓度下,连续流动反应器中的抑制作用远高于短期分批测定,这很可能是由于Zn,Ni和Cd内在化的缓慢动力学以及持续暴露于金属中的影响。连续流反应器。在批次分析中,螯合剂对硝化作用的抑制顺序为:EDA EDTA DTPA。加入适量的络合伴侣(如Ca 2 + ,Mg 2 + 和Fe 3 + )可完全消除EDTA的抑制作用。而没有受到EDA的抑制。 EDTA和DTPA的抑制作用,而不是EDA的抑制作用与细胞Ca 2 + 的消耗有关。此外,EDA的抑制作用与细胞K + 的大量渗漏和LIVE / DEAD Baclight™细菌生存力分析所推断的质膜完整性破坏相伴。因此,EDA通过与EDTA和DTPA不同的作用机理进行抑制。

著录项

  • 作者

    Hu, Zhiqiang.;

  • 作者单位

    The University of Connecticut.;

  • 授予单位 The University of Connecticut.;
  • 学科 Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 193 p.
  • 总页数 193
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 环境污染及其防治;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号