首页> 外文学位 >Neural and statistical modeling of ultrasound backscatter.
【24h】

Neural and statistical modeling of ultrasound backscatter.

机译:超声反向散射的神经统计模型。

获取原文
获取原文并翻译 | 示例

摘要

The work in this dissertation concerns neural and statistical analysis of ultrasound backscatter. Backscatter echo modeling in ultrasound (US) is an important task that can facilitate interpreting US B-scans (brightness scans). Backscatter echo can be modeled by different statistical distributions, such as Rayleigh, Nakagami, generalized Nakagami, Rician, K, generalized K, and homodyned K. Each of these distributions has specific parameters that can be clinically important in tissue characterization.; The K, generalized K, and homodyned K distributions are the most general models whose parameters are related to scatterer density, spacing, and amplitude. However, their probability density functions (pdfs) involve transcendental functions, and estimating their parameters cannot be performed analytically. Artificial neural networks (ANNs), especially kernel-function and recurrent networks, can be useful in parameter estimation. ANNs can uncover highly non-linear relationships between parameters and function values that are computed from the data (e.g. functions of moments). Furthermore, ANNs are robust with respect to noisy data, and therefore can be used as complementary devices to assist in backscatter characterization.; In this dissertation, hybrid methods using entropy, ANNs, and other mathematical constructs are presented for the parameter estimation of the general backscatter distributions. Visualization of ultrasound envelopes from simulated RF data based on parameter maps of Nakagami and K distribution parameters is also described. This approach may be used to complement B-scans in obtaining additional information from ultrasonographic data.; Finally, a new approach to characterization of ultrasound backscatter echo based on generalized entropies is introduced. This approach makes no assumptions about the specific scattering distribution. Low order Renyi and Tsallis entropies have a higher dynamic range than Shannon entropy with respect to a wide range of scattering conditions, and are therefore potentially useful in estimating scatterer density, regularity, and amplitude. A neural network estimator is constructed to illustrate the validity of this approach.
机译:本文的工作涉及超声反向散射的神经和统计分析。超声(US)中的反向散射回波建模是一项重要任务,可以帮助解释US B扫描(亮度扫描)。反向散射回波可以通过不同的统计分布来建模,例如Rayleigh,Nakagami,广义Nakagami,Rician, K ,广义 K 和同质化的 K 。 。这些分布中的每一个都有特定的参数,这些参数在组织表征中可能在临床上很重要。 K ,广义 K 和齐次化的 K 分布是最通用的模型,其参数与散射体密度,间距和幅度有关。但是,它们的概率密度函数(pdfs)包含先验函数,因此无法解析地估计其参数。人工神经网络(ANN),尤其是核函数网络和递归网络,在参数估计中可能很有用。人工神经网络可以发现参数和根据数据计算出的函数值之间的高度非线性关系(例如矩函数)。此外,人工神经网络在噪声数据方面也很健壮,因此可以用作辅助设备以辅助反向散射特征分析。在本文中,提出了使用熵,人工神经网络和其他数学构造的混合方法,用于一般反向散射分布的参数估计。还描述了基于Nakagami和 K 分布参数的参数图从模拟的RF数据中显示超声包络的可视化。该方法可用于补充B扫描,以从超声数据中获取其他信息。最后,介绍了一种基于广义熵表征超声反向散射回波的新方法。该方法不对特定的散射分布做任何假设。就较宽的散射条件而言,低阶Renyi和Tsallis熵的动态范围高于Shannon熵,因此在估算散射体密度,规则性和振幅方面可能很有用。构造了一个神经网络估计器来说明这种方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号