首页> 外文学位 >Molecular modeling of nitroxide spin labels: Methods development and applications.
【24h】

Molecular modeling of nitroxide spin labels: Methods development and applications.

机译:一氧化氮自旋标记物的分子建模:方法开发和应用。

获取原文
获取原文并翻译 | 示例

摘要

There are two major obstacles in the interpretation of EPR spectra: (a) most spin labels are not fully immobilized by the protein, hence it is difficult to distinguish the mobility of the label with respect to the protein from the reorientation of the protein itself and (b) even in cases where the label is fully immobilized its orientation with respect to the protein is not known, which prevents interpretation of probe reorientation in terms of protein reorientation.; A computational strategy was developed for determining (a) whether or not a spin label is immobilized and (b) if immobilized, predicting its conformation within the protein. A Monte Carlo minimization algorithm was developed to search the conformational space of labels within known atomic level structures of proteins. The method was validated using a series of spin labels of varying size and geometry docked to sites on the myosin head catalytic and regulatory domains. The predicted immobilization and conformation compared well with experimental values. Thus, probes can now be designed and targeted to report on various modes of molecular dynamics. Applications are presented in which the method has been used to predict (a) distance distributions between pairs of spin labels; (b) spin label solvent accessibility; (c) spin label mobility and (d) starting structures for molecular dynamics simulations.; In cases where immobilization of the spin label is not possible, the observed mobility is a convolution of protein dynamics and probe dynamics. In order to account for probe dynamics, a hybrid method was developed that combines molecular dynamics (MD) and the stochastic Liouville (SLE) approach to EPR lineshape simulation, MD-SLE. Molecular Dynamics was used to predict the motion of the spin probe in the local environment of the labeled site and to calculate an ordering potential, which was then used as input to the SLE simulations of EPR spectra. The method was validated against high-field EPR experiments, where the macromolecular motion is frozen out, and the spectrum is sensitive to the details of the probe diffusion within the local structure of the macromolecule.
机译:EPR谱图的解释有两个主要障碍:(a)大多数自旋标记未完全固定在蛋白质上,因此很难通过蛋白质本身的重新定向来区分标记相对于蛋白质的迁移率,以及(b)即使在标记物完全固定的情况下,其相对于蛋白质的方向也是未知的,这阻止了根据蛋白质重新定向来解释探针重新定向。开发了一种计算策略来确定(a)是否固定了旋转标记,以及(b)如果固定了旋转标记,从而预测其在蛋白质中的构象。开发了一种蒙特卡洛最小化算法,以搜索蛋白质已知原子级结构内的标记构象空间。使用一系列大小和几何形状不一的旋转标签验证了该方法,这些旋转标签对接在肌球蛋白头部催化域和调节域上。预测的固定化和构象与实验值很好地比较。因此,现在可以设计探针并将其靶向以报告各种分子动力学模式。提出了一些应用,其中该方法已用于预测(a)自旋标记对之间的距离分布; (b)旋转标签溶剂的可及性; (c)自旋标记迁移率和(d)分子动力学模拟的起始结构;在无法固定旋转标记的情况下,观察到的迁移率是蛋白质动力学和探针动力学的卷积。为了考虑探针动力学,开发了一种混合方法,该方法结合了分子动力学(MD)和随机Liouville(SLE)方法进行EPR线形仿真,即MD-SLE。使用分子动力学来预测自旋探针在标记位点的局部环境中的运动并计算有序电势,然后将其用作EPR光谱的SLE模拟的输入。该方法针对大分子运动被冻结的高场EPR实验进行了验证,并且该光谱对探针在大分子局部结构内扩散的细节敏感。

著录项

  • 作者

    Sale, Kenneth Louis.;

  • 作者单位

    The Florida State University.;

  • 授予单位 The Florida State University.;
  • 学科 Biophysics General.; Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 325 p.
  • 总页数 325
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物物理学;生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号