首页> 外文学位 >Physical Polymerization Mechanisms in the Chemistry-to-biology Transition.
【24h】

Physical Polymerization Mechanisms in the Chemistry-to-biology Transition.

机译:化学到生物学转变中的物理聚合机制。

获取原文
获取原文并翻译 | 示例

摘要

Studying complex systems and emergent phenomena is very popular today. The reason is that we desperately need more knowledge about many complex systems such as cells, organisms, society and emergent phenomena on the internet. Applying physical and quantitative methods to such systems resulted in many discoveries, yet a lot of knowledge is missing. In particular, we don't fully understand living systems including their emergence. What are the minimal requirements for life? How to make a chemical system capable of inheritance and open ended evolution? If a system is capable of Darwinian evolution, is it necessarily a living system? Modern life relies in its functioning (including inheritance and capability to evolve) on long polymeric molecules: proteins and nucleic acids. Because of their indispensable role in cells it is very important to understand the origins of these biological polymers as well as their role in the emergence of inheritance, evolution and metabolism. Are long biological polymers enough to jump-start life? We propose physical mechanisms of emergence of long bio-polymers in the prebiotic world. We use HP lattice model to model polymerization, interaction and folding of short chains of hydrophobic (H) and polar (P) monomers. We show that such chains fold into relatively compact structures exposing hydrophobic patches. These hydrophobic patches act as primitive versions of modern protein's catalytic site and assist in polymerization of other HP-sequences. These HP-sequences form autocatalytic, self-sustaining dynamical systems capable of multimodality: ability to settle at multiple distinct quasi-stable states characterized by different groups of dominating polymers. We study properties of these systems to see their role in the chemistry-to-biology transition. We also propose a stochastic simulation algorithm for modeling agent-based complex systems which is particularly well suited for polymeric systems with several types of monomers. This algorithm is efficient for sparse systems: systems where the number of the species which could possible be generated is much higher than the number of species actually generated. It allows for simulation of systems with unlimited number of molecular species.
机译:今天,研究复杂的系统和突发现象非常流行。原因是我们迫切需要更多有关许多复杂系统的知识,例如细胞,有机体,社会和互联网上的新兴现象。将物理和定量方法应用于此类系统导致了许多发现,但仍然缺少许多知识。特别是,我们还没有完全了解生命系统,包括生命系统的出现。最低生活要求是什么?如何使化学体系具有遗传性和开放性进化能力?如果一个系统能够进行达尔文进化,那么它是否必然是一个存在的系统?现代生活依赖于其在长聚合分子(蛋白质和核酸)上的功能(包括遗传和进化能力)。由于它们在细胞中不可缺少的作用,因此了解这些生物聚合物的起源以及它们在遗传,进化和新陈代谢中的作用非常重要。长生物聚合物足以启动生命吗?我们提出了益生元世界中长生物聚合物出现的物理机制。我们使用HP晶格模型对疏水(H)和极性(P)单体的短链的聚合,相互作用和折叠进行建模。我们表明,这样的链折叠成相对紧凑的结构,露出疏水补丁。这些疏水性补丁是现代蛋白质催化位点的原始形式,并有助于其他HP序列的聚合。这些HP序列形成了具有多峰性的自催化,自我维持的动力学系统:能够以多个不同的主导聚合物为特征,稳定在多个不同的准稳态。我们研究了这些系统的特性,以了解它们在化学-生物学转变中的作用。我们还提出了一种用于基于代理的复杂系统建模的随机仿真算法,该算法特别适合于具有几种单体类型的聚合物系统。该算法对于稀疏系统非常有效:可能生成的物种数量比实际生成的物种数量高得多的系统。它允许模拟具有无限数量分子种类的系统。

著录项

  • 作者

    Guseva, Elizaveta.;

  • 作者单位

    State University of New York at Stony Brook.;

  • 授予单位 State University of New York at Stony Brook.;
  • 学科 Biophysics.;Evolution development.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 96 p.
  • 总页数 96
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号