首页> 外文学位 >New Applications of Learning-Based Modeling in Nanoscale Integrated-Circuit Design.
【24h】

New Applications of Learning-Based Modeling in Nanoscale Integrated-Circuit Design.

机译:基于学习的建模在纳米集成电路设计中的新应用。

获取原文
获取原文并翻译 | 示例

摘要

In today's leading-edge semiconductor technologies, it is increasingly difficult for IC designers to achieve sufficient improvements of performance, power and area metrics in their next-generation products. One root cause of this difficulty is the increased margins that are used in the design process to guardband for (i) variability and aging, as well as (ii) analysis inaccuracies. Currently, these margins incur huge costs to design companies, because the benefits by deploying the next technology node is only approximately 20% in circuit performance, power and density. To reduce margins, fast and accurate pathfinding of architecture, technology and constraints choices are essential. A second root cause is the high cost (and, therefore, limited supply) of electronic design automation tool licenses, accompanied by the lack of any systematic methodology to optimize the use of available tools within long-duration, highly iterative design processes. This constrains designers to perform only limited design-space exploration, so as to keep within limits on design infrastructure cost and design turnaround time. This thesis presents new techniques to reduce guardbands in optimization loops in the IC design process by using fast and accurate learning-based models. These techniques can be grouped into three main thrusts: (i) productivity through improved design- and implementation-space exploration; (ii) improved accuracy of electrical modeling and enablement of auxiliary physical design optimizations; and (iii) design power, energy, management and cost optimizations. In the productivity through improved design- and implementation-space exploration thrust, this thesis presents four applications of learning-based models for accurate prediction of area, power, timing and routability. To enable area and power estimation of Networks-on- Chip routers, so that architecture-level (RTL-level) design-space exploration can be efficient performed, this thesis presents an open-source tool, ORION3.0, that has been released on the web. In the improved accuracy of electrical modeling and enablement of auxiliary physical design optimizations thrust, this thesis presents new methodologies to perform high-dimensional learning-based modeling of delay, transition time and slack in timing paths. A methodology to develop accurate models of post-routing optimization of signal delays at multiple signoff corners, so as to enable a new optimization of clock skew variation across corners is also described. In the design power, energy, management and cost optimizations thrust, this thesis presents three distinct works that directly benefit leading-edge SoC design companies. The first work describes a new analytic three-dimensional placement tool using a new objective function that achieves significant wirelength and power reduction relative to two-dimensional implementations. The second work provides two mixed integer-linear programs for optimal multi-project, multi-resource allocation with task precedence and resource co-constraints for IC design management and cost reduction. The third work presents a maximum-value, reliability-constrained overdrive frequencies problem that guarantees prescribed lower bounds on acceptable performance and acceptable throughput in multicore systems, without exceeding prescribed lifetime budget for any core.
机译:在当今最先进的半导体技术中,IC设计人员越来越难以在其下一代产品中实现性能,功率和面积指标的充分改进。造成这一困难的根本原因是在设计过程中增加了裕度,以保护(i)变异性和老化以及(ii)分析不准确。目前,这些利润给设计公司带来了巨大的成本,因为部署下一个技术节点所带来的收益仅在电路性能,功率和密度方面约占20%。为了减少利润,对架构,技术和约束选择进行快速准确的寻路至关重要。第二个根本原因是电子设计自动化工具许可证的高成本(因此,供应有限),同时缺乏在长期,高度迭代的设计过程中优化可用工具使用的任何系统方法。这限制了设计人员仅执行有限的设计空间探索,从而将设计基础架构成本和设计周转时间限制在一定范围内。本文提出了一种新技术,通过使用快速,准确的基于学习的模型来减少IC设计过程中优化循环中的保护带。这些技术可以分为三个主要方面:(i)通过改进设计和实施空间探索来提高生产率; (ii)提高电气建模的准确性并实现辅助物理设计的优化; (iii)设计动力,能源,管理和成本优化。通过改进设计和实施空间的探索推力,在生产率方面,本文提出了基于学习的模型的四个应用,用于精确预测面积,功率,时序和可布线性。为了实现片上网络路由器的面积和功率估计,以便可以高效地执行体系结构级(RTL级)设计空间探索,本文提出了一种开源工具ORION3.0,该工具已经发布。在网上。为了提高电气建模的准确性并实现辅助物理设计的优化,本文提出了一种新的方法,可以对延迟路径,过渡时间和时序路径的松弛进行基于高维学习的建模。还描述了一种方法,该方法用于开发多个签核拐角处的信号延迟的路由后优化的精确模型,从而实现跨拐角的时钟偏斜变化的新优化。在设计能力,能源,管理和成本优化方面,本文提出了三项截然不同的作品,它们直接使领先的SoC设计公司受益。第一项工作描述了一种使用新的目标函数的新的解析式三维放置工具,该工具相对于二维实现方式实现了显着的线长和功耗降低。第二项工作提供了两个混合的整数线性程序,用于优化多项目,具有任务优先级的多资源分配以及用于IC设计管理和降低成本的资源共约束。第三项工作提出了一个最大值,受可靠性限制的超速频率问题,该问题保证了多核系统中可接受的性能和可接受的吞吐量的规定下限,而没有超出任何核的规定寿命预算。

著录项

  • 作者

    Nath, Siddhartha.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Computer science.;Information technology.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 294 p.
  • 总页数 294
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号