首页> 外文学位 >CMOS RF filtering at GHz frequency.
【24h】

CMOS RF filtering at GHz frequency.

机译:在GHz频率下进行CMOS RF滤波。

获取原文
获取原文并翻译 | 示例

摘要

Recently, there has been tremendous interest in CMOS integrated circuits for radio-frequency (RF) applications. This trend has been driven by the desire to integrate the entire RF circuitry on the same substrate on which the digital circuits are in order to reduce cost. The continuous scaling of CMOS technology has progressed sufficiently to offer device performance suitable for RF applications at GHz frequencies. The demonstration of transistors with gate lengths of less than 0.1 μm and fT's higher than 100 GHz suggests the trend will continue throughout this decade. Nevertheless, RF designs in CMOS face some challenges that must be resolved before the “single-chip radio” can be realized. In particular, the quality of on-chip passive components is among the most pressing issues to overcome. As frequency increases the inductor's quality factor (Q) improves while the quality factor of capacitors and varactors degrades. In this dissertation, a new CMOS-compatible varactor with low tuning voltage is introduced and modeled in detail. The varactor can achieve a tuning range of 3:1 relatively independent of supply voltage and its quality factor improves with technology scaling.; On-chip RF filter implementation is another major difficulty in CMOS RF design. Due to the low Q of on-chip spiral inductors, filter loss becomes too large. To overcome the loss, a novel Q-enhancement scheme is presented, which has been shown to achieve a Q as high as 170 in a 0.25-μm CMOS process. Using the Q-enhancement technique, a 2.14 GHz bandpass filter has been fabricated and measurement data shows that 0-dB insertion loss is achieved. The filter using the Q-enhancement scheme possesses no inherent passband distortion associated with the conventional scheme, whose loss compensation element shows strong frequency dependence.
机译:近来,对于用于射频(RF)应用的CMOS集成电路引起了极大的兴趣。这种趋势是由于希望将整个RF电路集成在数字电路所在的同一基板上,以降低成本而推动的。 CMOS技术的连续缩放已取得足够的进步,以提供适合GHz频率下RF应用的设备性能。栅极长度小于0.1μm且f T 高于100 GHz的晶体管的演示表明,这一趋势将在整个十年中持续下去。然而,CMOS中的RF设计在实现“单芯片无线电”之前必须解决一些挑战。特别地,片上无源元件的质量是需要解决的最紧迫的问题之一。随着频率的增加,电感器的品质因数(Q)会提高,而电容器和变容二极管的品质因数会下降。本文介绍了一种新型的具有低调谐电压的CMOS兼容变容二极管,并对其进行了详细建模。变容二极管可以相对于电源电压实现3:1的调谐范围,并且其品质因数随技术规模的提高而提高。片上RF滤波器的实现是CMOS RF设计中的另一个主要困难。由于片上螺旋电感器的Q低,滤波器损耗变得太大。为了克服这种损失,提出了一种新颖的Q增强方案,该方案已显示在0.25μmCMOS工艺中可实现高达170的Q。使用Q增强技术,已经制造了2.14 GHz带通滤波器,并且测量数据表明,实现了0 dB的插入损耗。使用Q增强方案的滤波器不具有与常规方案相关的固有通带失真,其损耗补偿元件表现出很强的频率依赖性。

著录项

  • 作者

    Soorapanth, Theerachet.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 126 p.
  • 总页数 126
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号