首页> 外文学位 >Synthesis, characterization, and modeling of nanowires and nanosprings: One-dimensional quantum structures.
【24h】

Synthesis, characterization, and modeling of nanowires and nanosprings: One-dimensional quantum structures.

机译:纳米线和纳米弹簧的合成,表征和建模:一维量子结构。

获取原文
获取原文并翻译 | 示例

摘要

The focus of this work is an investigation of growth, characterization and modeling of nanowire systems. Boron carbide and silicon carbide nanowires have been successfully synthesized using plasma enhanced chemical vapor deposition (PECVD) technique. The growth conditions for nanowires have also been optimized.; Morphological structures of boron carbide and silicon carbide nanowires indicate that both have high aspect ratios (length vs. diameter). Diameters of the nanowires are in a range from 10 to 100 nm. Lengths of the nanowires are larger than 1 μm, and up to a hundred microns. Crystal structure information obtained from select area diffraction (SAD) shows that the body of a boron carbide nanowire is the rhombohedral crystal phase of B4C, while the tip of the nanowire is composed of iron and boron. For silicon carbide nanowires, the crystal structures are in combinations of 4H-SiC and 6H-SiC or 3C-SiC. The tip of a silicon carbide nanowire is composed of nickel and silicon. The existence of tips where the composition is other than that in nanowire bodies is a clear indication that the nanowires grow via the vapor-liquid-solid (VLS) mechanism.; Electronic and vibrational properties of boron carbide and silicon carbide nanowires have been determined via near edge X-ray absorption fine structure spectroscopy (NEXAFS) and Raman spectroscopies. The electronic structure of boron carbide nanowires, as determined with NEXAFS, is very similar to that of bulk boron carbide.; Concomitant with the NEXAFS measurements and SAD pattern, the Raman spectra of boron carbide nanowires are equivalent to that of single-crystal and polycrystalline boron carbide. In addition, broadening and upward shifting of Raman modes are a manifestation of finite size effects and strain induced effects of nanowires. The Raman spectrum of silicon carbide nanowires is consistent with either 3C-SiC phase or combinations of modes of the 4H-SiC and 6H-SiC phase, which is in good agreement with SAD patterns. Broadening and downward shifting of Raman modes in silicon carbide nanowires also demonstrate the finite size effects of the nanowire geometry.; Selective area deposition demonstrates that the distribution of the nanowires on the substrate surface is pre-determined by arranging the catalyst seeds location on the substrate surface. Meanwhile, the diameters of the nanowires are determined by the sizes of metallic catalyst seeds based upon VLS growth modes. This suggests that more complicated patterns and fine nanowire distribution can be achieved using such a method.; A novel nanospring structure has been discovered in this work. Boron carbide and silicon carbide nanosprings have been synthesized using PECVD technique. The structures of the boron carbide and silicon carbide nanosprings have been determined to be amorphous, rather than crystalline. In order to understand the amorphous nanospring growth mechanism, a nanospring growth model has been established, which is based on VLS growth mode.; In this model, the orientation of the catalyst relative to nanowire and contact angle anisotropy play key roles in driving nanospring growth. This growth model successfully describes nanospring growth and can be universally used to describe the growth of all types of nano- and micro-sized amorphous springs, regardless of their composition. In order to determine the nanospring mechanical properties, I proposed a measurement method and established a theoretical model to find out the impacts of spring geometry and material shear modulus on their mechanical properties.
机译:这项工作的重点是研究纳米线系统的生长,表征和建模。碳化硼和碳化硅纳米线已使用等离子增强化学气相沉积(PECVD)技术成功合成。纳米线的生长条件也已优化。碳化硼和碳化硅纳米线的形态结构表明,两者均具有较高的纵横比(长度与直径)。纳米线的直径在10至100nm的范围内。纳米线的长度大于1μm,并且高达一百微米。从选择区衍射(SAD)获得的晶体结构信息表明,碳化硼纳米线的主体是B 4 的菱面体晶相,而纳米线的尖端由铁和硼组成。对于碳化硅纳米线,晶体结构是4H-SiC和6H-SiC或3C-SiC的组合。碳化硅纳米线的尖端由镍和硅组成。尖端的组成不同于纳米线体中的尖端的存在清楚地表明纳米线是通过汽-液-固(VLS)机理生长的。碳化硼和碳化硅纳米线的电子和振动特性已通过近边缘X射线吸收精细结构光谱(NEXAFS)和拉曼光谱确定。用NEXAFS确定的碳化硼纳米线的电子结构与块状碳化硼非常相似。结合NEXAFS测量和SAD图案,碳化硼纳米线的拉曼光谱与单晶和多晶碳化硼的拉曼光谱相当。另外,拉曼模式的加宽和上移是纳米线的有限尺寸效应和应变诱导效应的体现。碳化硅纳米线的拉曼光谱与3C-SiC相或4H-SiC和6H-SiC相的模式组合相一致,这与SAD图案非常吻合。碳化硅纳米线中拉曼模的增宽和向下位移也证明了纳米线几何形状的有限尺寸效应。选择性区域沉积表明,纳米线在基底表面上的分布是通过在基底表面上布置催化剂晶种位置来预先确定的。同时,纳米线的直径由基于VLS生长模式的金属催化剂种子的尺寸决定。这表明使用这种方法可以实现更复杂的图案和精细的纳米线分布。在这项工作中发现了一种新颖的纳米弹簧结构。碳化硼和碳化硅纳米弹簧已经使用PECVD技术合成。已经确定碳化硼和碳化硅纳米弹簧的结构是非晶的,而不是晶体的。为了了解非晶态纳米弹簧的生长机理,建立了基于VLS生长模式的纳米弹簧生长模型。在该模型中,催化剂相对于纳米线的取向和接触角各向异性在驱动纳米弹簧生长中起关键作用。该生长模型成功地描述了纳米弹簧的生长,并且可以通用地描述所有类型的纳米和微米级非晶态弹簧的生长,而不论其组成如何。为了确定纳米弹簧的力学性能,我提出了一种测量方法并建立了理论模型,以找出弹簧几何形状和材料剪切模量对其力学性能的影响。

著录项

  • 作者

    Zhang, Daqing.;

  • 作者单位

    University of Idaho.;

  • 授予单位 University of Idaho.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 118 p.
  • 总页数 118
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号