首页> 外文学位 >Quantum chemical modeling of redox reactivity, degradation pathways and persistence for aqueous phase contaminants.
【24h】

Quantum chemical modeling of redox reactivity, degradation pathways and persistence for aqueous phase contaminants.

机译:氧化还原反应性,降解途径和水相污染物持久性的量子化学建模。

获取原文
获取原文并翻译 | 示例

摘要

Models used to predict the fate of aqueous phase contaminants are often limited by their inability to address the widely varying redox conditions in natural and engineered systems, as well as by their dependence on existing experimental data for structurally similar compounds. Here, a novel approach based on quantum chemical calculations is developed, which can be applied to assess the environmental fate of any contaminant of interest without previous knowledge of the compound. It identifies the thermodynamic conditions necessary for redox-promoted degradation, and predicts degradation pathways as well as contaminant persistence.;Hexamethylphosphoramide (HMPA), a widely used solvent and poorly characterized groundwater contaminant, is used as a test case. The development of an analytical technique based on liquid chromatography / time-of-flight mass spectrometry enables the detection of various degradation products that are reported here for the first time.;The oxidation of HMPA is estimated to require at least iron-reducing conditions at low to neutral pH, and nitrate-reducing conditions at high pH. Furthermore, the transformation of HMPA by permanganate, a common groundwater remediation agent, is predicted to proceed through sequential N-demethylation. Experimental validation confirms the predicted pathways of HMPA oxidation by permanganate to phosphoramide via the formation of less methylated as well as singly and multiply oxygenated reaction intermediates. Pathways predicted to be thermodynamically or kinetically unfavorable are similarly absent in the experimental studies.;Theoretical and experimental investigations, using 18O-labeled water to determine the source of oxygen in the products of HMPA oxidation, reveal a novel mechanism in addition to the one reported in the literature for methyl oxidation. The strategy of calculating Gibbs free energies of activation can be generally used to determine the primary degradation pathway when two or more pathways are thermodynamically favorable. In this study, however, the determined kinetic parameters show that both HMPA oxidation pathways proceed at similar reaction rates.;Hydrolysis of the P-N bond in HMPA is the only thermodynamically favorable reaction that may lead to its degradation under strongly reducing conditions. Through calculation of aqueous Gibbs free energies of activation for all potential reaction mechanisms, it is predicted that HMPA hydrolyzes via an acid-catalyzed A2 P mechanism at pH 8.2, and an uncatalyzed concerted backside S N2 P-b mechanism at pH 8.2 - 8.5. The estimated half-lives of thousands to hundreds of thousands of years over the groundwater-typical pH range of 6.0 to 8.5 indicate that HMPA will be persistent in the absence of suitable oxidants. At pH 0, where the hydrolysis reaction is rapid enough to enable measurement, the experimentally determined rate constant and half-life are in excellent agreement with the predicted values.;The newly developed methodology will enable scientists, regulators, and engineers to estimate the favorability of contaminant degradation at a specific field site, suitable approaches to enhance degradation, and the persistence of a contaminant and its reaction intermediates.
机译:用于预测水相污染物命运的模型通常受其无法解决天然和工程系统中广泛变化的氧化还原条件的限制,以及它们对结构相似化合物的现有实验数据的依赖也受到限制。在此,开发了一种基于量子化学计算的新颖方法,该方法可用于评估任何目标污染物的环境命运,而无需事先了解该化合物。它确定了氧化还原促进的降解所必需的热力学条件,并预测了降解途径以及污染物的持久性。六甲基磷酰胺(HMPA)是一种广泛使用的溶剂,其表征欠佳的地下水污染物用作测试用例。基于液相色谱/飞行时间质谱技术的分析技术的发展使得能够检测到首次报道的各种降解产物。估计HMPA的氧化至少需要还原铁的条件为低至中性的pH值,高pH值的硝酸盐还原条件。此外,预计高锰酸盐(一种常见的地下水修复剂)对HMPA的转化将通过顺序的N-去甲基化进行。实验验证证实了高锰酸盐通过形成较少甲基化以及单独和多次氧化的反应中间体形成的HMPA氧化为磷酰胺的预期途径。在实验研究中类似地缺少预测在热力学或动力学上不利的途径;理论和实验研究使用18 O标记的水来确定HMPA氧化产物中的氧源,除了报道的一种之外,还发现了一种新颖的机制在有关甲基氧化的文献中。当两个或多个途径在热力学上是有利的时,计算吉布斯活化能的策略通常可用于确定主要降解途径。然而,在这项研究中,确定的动力学参数表明两种HMPA氧化途径均以相似的反应速率进行。HMPA中P-N键的水解是唯一在热还原条件下可能导致其降解的热力学上有利的反应。通过计算所有潜在反应机理的活化水吉布斯自由能,可以预测HMPA在pH <8.2时通过酸催化的A2 P机理水解,在pH 8.2-8.5下通过未催化的协同背面S N2 P-b机理水解。在地下水的典型pH值为6.0至8.5的情况下,估计的数千至数十万年的半衰期表明,在没有合适的氧化剂的情况下,HMPA会持久存在。在pH为0的条件下,水解反应足够快以进行测量,实验确定的速率常数和半衰期与预测值非常吻合;新开发的方法将使科学家,监管机构和工程师能够估算出适宜性特定现场的污染物降解,增强降解的合适方法以及污染物及其反应中间体的持久性。

著录项

  • 作者

    Blotevogel, Jens.;

  • 作者单位

    Colorado State University.;

  • 授予单位 Colorado State University.;
  • 学科 Chemistry Physical.;Environmental Sciences.;Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号