首页> 外文学位 >Regulatory mechanisms governing fluid formation in mouse uterus: Role of endometrial ion channels, transporters and their interactions.
【24h】

Regulatory mechanisms governing fluid formation in mouse uterus: Role of endometrial ion channels, transporters and their interactions.

机译:调控小鼠子宫中流体形成的调控机制:子宫内膜离子通道,转运蛋白及其相互作用的作用。

获取原文
获取原文并翻译 | 示例

摘要

To understand the regulatory mechanisms underlying electrolytes transport across the endometrium, this study investigated the roles of endometrial ion channels, transporters and their interactions using the techniques of electrophysiology, molecular biology, immunohistochemistry and spectrofluorometry.; The primary culture of endometrial epithelial cells exhibits predominantly Na+ absorption, which is mediated by epithelial Na+ channel (ENaC), under basal condition but becomes predominant Cl secretion, which is mediated by apical Cl channels, upon stimulation. Using the short-circuit current technique, the mechanisms governing the switch between the two opposite processes have been demonstrated to be mediated by an interaction between ENaC and at least two types of Cl channels.; HCO3 secretion is one of the essential functions of the endometrial epithelium as suggested by high HCO3 concentration in the uterine fluid, and its critical role in sperm movement, capacitation and embryo development. The present study has investigated both basolateral and apical mechanisms in mediating HCO 3 transport.; The present study has also demonstrated the expression and function of three isoforms of Na+/H+ exchanger (NHE) in mouse endometrium using RT-PCR, immunohistochemistry, and spectrofluorimetry. The bilateral distribution of the isoforms suggests that they may play different roles in cellular functions.; To demonstrate the physiological importance of endometrial HCO3 secretion, the direct effect of endometrial secreted HCO3 on sperm function was studied. Using the computer-assisted sperm analysis (CASA), chlortetracycline (CTC) staining and co-culture techniques, the present study has demonstrated that both sperm motility and capacitation depended on HCO3 secreted by cultured mouse endometrial epithelium. The capacitation and fertilizing ability of mouse sperm co-cultured with defective HCO3-secreting CF epithelial cells was significantly lower than that with normal HCO3 secreting epithelial cells, suggesting that impaired uterine HCO3 secretion due to defective CFTR may greatly suppress sperm capacitation and subsequent egg fertilization leading to infertility as seen in CF women.; In short, the present study has demonstrated the important roles of uterine epithelial ion channels, transporters and their interaction in regulating uterine fluid formation, which is crucial for various reproductive events occurring in the uterus. The information obtained may provide grounds for development of treatment methods for female infertility (such as in CF) and new strategies for contraception. (Abstract shortened by UMI.)
机译:为了了解电解质跨子宫内膜运输的调控机制,本研究使用电生理学,分子生物学,免疫组织化学和荧光光谱技术研究了子宫内膜离子通道,转运蛋白的作用及其相互作用。内膜上皮细胞的原代培养主要表现为Na + 吸收,该吸收是在基础条件下由上皮Na + 通道(ENaC)介导的,但主要表现为Cl -刺激后由顶端Cl -通道介导的分泌。使用短路电流技术,已经证明控制两个相反过程之间切换的机制是由ENaC与至少两种Cl -通道之间的相互作用介导的。 HCO 3 -的分泌是高浓度HCO 3 -所暗示的子宫内膜上皮的基本功能之一。在子宫液中,及其在精子运动,获能和胚胎发育中的关键作用。本文研究了基底外侧和根尖介导HCO 3 -转运的机制。本研究还通过RT-PCR,免疫组织化学和荧光光谱法证实了Na + / H + 交换子(NHE)三种同工型在小鼠子宫内膜的表达和功能。同工型的双边分布表明它们可能在细胞功能中发挥不同的作用。为了证明子宫内膜HCO 3 -分泌的生理重要性,子宫内膜分泌的HCO 3 -对子宫内膜的直接作用研究精子功能。使用计算机辅助精子分析(CASA),金霉素(CTC)染色和共培养技术,本研究表明精子活力和获能能力均取决于HCO 3 - 3 -分泌的CF上皮细胞共培养的小鼠精子的获能和受精能力明显低于正常HCO 3 -分泌的上皮细胞,提示CFTR缺陷导致子宫HCO 3 -分泌受损可能极大地抑制了精子的获能能力和随后的受精卵如CF妇女所见的不育。简而言之,本研究证明了子宫上皮离子通道,转运蛋白及其相互作用在调节子宫液形成中的重要作用,这对于子宫中发生的各种生殖事件至关重要。所获得的信息可能为发展女性不育症治疗方法(例如在CF中)和新的避孕策略提供依据。 (摘要由UMI缩短。)

著录项

  • 作者

    Wang, Xiaofei.;

  • 作者单位

    Chinese University of Hong Kong (People's Republic of China).;

  • 授予单位 Chinese University of Hong Kong (People's Republic of China).;
  • 学科 Health Sciences Pathology.; Biology Animal Physiology.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 病理学;生理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号