首页> 外文学位 >A Convenient Homotopy Limit Description of Spaces of Affine Embeddings.
【24h】

A Convenient Homotopy Limit Description of Spaces of Affine Embeddings.

机译:仿射嵌入空间的便捷同伦极限描述。

获取原文
获取原文并翻译 | 示例

摘要

Let M be the disjoint union of m copies of Rn (m ≥ 1, n ≥ 0), and let M0 denote the subspace consisting of the disjoint union of the closed unit balls. For a vector space V, we define AffEmb(M, V) to be the space of maps f : M → V which are affine on each component and which are embeddings when restricted to M 0. In this paper, we present a homotopy limit description of Sigma infinity AffEmb(M, V). Specifically, we begin by defining a collection of objects we call "complete affine partitions." Such an entity consists of a disjoint union of affine spaces, A = ⨿i Ai, along with an equivalence relation such that if two points lie in the same component of A, they are in the same equivalence class. Given a complete affine partition on A, we can consider maps f : A → M for which there is a pair of points in the same equivalence class but with distinct images under f; we call such maps "non-locally constant". We establish a category whose objects are pairs consisting of a complete affine partition and a non-locally constant map to M. From this category we consider the functor which takes such a pair to the suspension spectrum of the space of non-locally constant maps to V. In this paper we demonstrate that Sigmainfinity AffEmb(M, V) is the homotopy limit of this functor, over this category. To attain this, we make a digression to talk about categories whose objects and morphisms both form spaces, instead of just sets, as this is the case for our category.;This work extends the work of Arone, who has established preliminary results in the case when m = 1 (the case of linear injective maps, [2]) and the case when n = 0 (configuration spaces, [3]). Our method of proof is to reduce the category we construct to a category which is the join of the categories Arone uses. We also, therefore, describe the interaction of homotopy limits with joins of categories and functors.
机译:设M为Rn的m个副本的不相交联合(m≥1,n≥0),而M0表示由闭合单位球的不相交联合组成的子空间。对于向量空间V,我们将AffEmb(M,V)定义为映射f的空间:M→V,它们在每个分量上都是仿射的,并且在限制为M 0时是嵌入的。在本文中,我们提出了一个同伦极限Sigma Infinity AffEmb(M,V)的说明。具体来说,我们首先定义一个称为“完整仿射分区”的对象的集合。这样的实体由仿射空间(A =⨿ i Ai)的不相交联合以及等价关系组成,这样,如果两个点位于A的相同分量中,则它们属于相同的等价类。给定A上的一个完全仿射划分,我们可以考虑映射f:A→M,在等价类中有一对点,但在f下有不同的图像;我们称此类映射为“非局部常数”。我们建立了一个类别,其对象是由一个完整的仿射分区和一个到M的非局部常数映射组成的对。从这个类别中,我们考虑了将这样的一对带到非局部常数映射空间的悬浮谱上的函子。 V。在本文中,我们证明了Sigmainfinity AffEmb(M,V)是该函子在该类别上的同伦极限。为了达到这个目的,我们在题外话中讨论了类别,这些类别的对象和词素都形成空间,而不仅仅是集合,因为我们的类别就是这种情况。这项工作扩展了Arone的工作,他在Arone中建立了初步的结果。 m = 1的情况(线性射影图的情况,[2])和n = 0的情况(配置空间,[3])。我们的证明方法是将构造的类别简化为Arone使用的类别的连接。因此,我们还描述了同构限制与类别和函子的连接的相互作用。

著录项

  • 作者

    Hamblet, Nicholas Andrew.;

  • 作者单位

    University of Virginia.;

  • 授予单位 University of Virginia.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 76 p.
  • 总页数 76
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号