首页> 外文学位 >Hydrodynamic coupling in driven colloid.
【24h】

Hydrodynamic coupling in driven colloid.

机译:驱动胶体中的流体动力耦合。

获取原文
获取原文并翻译 | 示例

摘要

We demonstrate that the onset of the convective stratification observed in a plethora of colloidal suspensions is initiated by non-convective nonlinear concentration waves known as Burgers shocks resulting from the hydrodynamic coupling of rising particles. These observations highlight the need for new experimental tools with which to study colloidal hydrodynamics, particularly under the influence of external forces. In meeting this need, we have developed an extremely general category of new experimental techniques which we call dynamic holographic optical tweezers (DHOTs). This revolutionary class of micromanipulation techniques can create arbitrary configurations of optical traps in three dimensions as well as mixed arrays of unconventional optical traps such as optical vortices, optical Bessel beams and optical line tweezers. We also introduce a novel optical trap called the modulated optical vortex. We describe algorithms for calculating the necessary holograms for such optical trapping configurations and then describe the dynamic holographic optical tweezer apparatus used to investigate the intensity structure and orbital angular momentum content of the optical vortex. These investigations reveal that the optical vortex scales qualitatively differently from predictions, and this discrepancy is explained on the basis of scalar diffraction theory. Furthermore, the measurements of the optical driving of a single particle are consistent with predictions that each photon in a helical beam carries lħ orbital angular momentum. Finally, we observe that the motion of a particle on an optical vortex created with a pixellated spatial light modulator (SLM) provides evidence for a novel optical ratchet potential around the optical vortex's circumference.
机译:我们证明了在大量胶体悬浮液中观察到的对流分层的发生是由非对流非线性浓度波(称为汉堡冲击)引起的,该波是由上升粒子的流体动力耦合引起的。这些观察结果凸显出需要新的实验工具来研究胶体流体动力学的需求,特别是在外力的影响下。为了满足这一需求,我们开发了一种极为通用的新实验技术,称为动态全息光学镊子(DHOT)。这类革命性的微操纵技术可以在三维上创建任意形状的陷阱,以及非常规陷阱的混合阵列,例如光学涡旋,贝塞尔光束和线镊。我们还介绍了一种新型的光阱,称为调制光涡旋。我们描述了用于计算此类光学陷阱配置所需的全息图的算法,然后描述了用于研究光学涡旋的强度结构和轨道角动量含量的动态全息光学镊子设备。这些研究表明,光学涡旋的尺度在质量上与预测的不同,这种差异是基于标量衍射理论来解释的。此外,单个粒子的光学驱动的测量结果与螺旋光束中每个光子携带 ħ的预测一致。轨道角动量。最后,我们观察到由像素化空间光调制器(SLM)产生的旋涡上的粒子运动为旋涡周围的新型光学棘轮势提供了证据。

著录项

  • 作者

    Curtis, Jennifer E.;

  • 作者单位

    The University of Chicago.;

  • 授予单位 The University of Chicago.;
  • 学科 Physics Optics.; Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号