首页> 外文学位 >Electrokinetic sub-micron particle manipulation for micromixing in bioreactors.
【24h】

Electrokinetic sub-micron particle manipulation for micromixing in bioreactors.

机译:电动亚微米颗粒操作,用于生物反应器中的微混合。

获取原文
获取原文并翻译 | 示例

摘要

Thanks to new microfabrication technology, labs-on-a-chip have developed large array parallel screening detection processes with very small analyte volume consumption. Cells, biomolecules, and micron-size particles can be manipulated and processed in micro biochemical reactors for diagnostical, drug screening, and drug detection purposes. The micro lab-on-a-chip can accomplish these tasks in a rapid, sensitive, and specific manner. Mixing in microreactors, however, stands out as one of the most time-consuming fluidic processes, even after all the advances made in lab-on-chip. Chaotic advection is an efficient mechanism that can enhance mixing in a usually diffusion dominated mixing in laminar flow. We found that a combination of fluid shear and large transverse force acting on the particles can form a set of stretches and folds which leads towards chaotic mixing. We identified a large electrokinetic force capable of moving particles into the saddle points region, where the stretches and folds can take place. With this force and the velocity shear generated in a micromixer, we have found a family of flow regimes among which efficient mixing can be obtained with specifically defined operating parameters. The microreactor has a large surface-to-volume ratio; hence, surface property is a very important parameter. A control scheme has been achieved, and has successfully prevented contamination. A reconfiguration scheme was demonstrated in a microfluidic device, where channels could be rendered selectively hydrophobic or hydrophilic, controlling the spontaneous wetting properties of water.
机译:得益于新的微细加工技术,单芯片实验室开发了大型阵列并行筛选检测工艺,其分析物消耗量非常小。可以在微生化反应器中对细胞,生物分子和微米级颗粒进行操作和处理,以用于诊断,药物筛选和药物检测。微型芯片实验室可以快速,灵敏和特定的方式完成这些任务。然而,即使在芯片实验室取得了所有进步之后,在微型反应器中进行混合仍是最耗时的流体工艺之一。混沌对流是一种有效的机制,可以增强层流中通常以扩散为主的混合中的混合。我们发现,流体剪切力和作用在颗粒上的较大横向力的组合可形成一组拉伸和折叠,从而导致混乱的混合。我们确定了一个大的电动势,能够将颗粒移动到鞍点区域,在该区域可以发生拉伸和折叠。利用这种力和在微型混合器中产生的速度剪切力,我们发现了一系列流态,其中可以通过特定定义的操作参数获得有效的混合。微反应器具有大的表面体积比。因此,表面性质是非常重要的参数。已经实现了控制方案,并成功地防止了污染。在微流体装置中证明了一种重配置方案,其中可以使通道选择性地具有疏水性或亲水性,从而控制水的自发润湿特性。

著录项

  • 作者

    Deval, Joanne Helene.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号