首页> 外文学位 >Development of Carbon-MEMS based device for the In Vivo Electrochemical Detection of Neurotransmitter Fluctuations.
【24h】

Development of Carbon-MEMS based device for the In Vivo Electrochemical Detection of Neurotransmitter Fluctuations.

机译:基于碳-MEMS的装置的体内神经递质波动的电化学检测。

获取原文
获取原文并翻译 | 示例

摘要

Electrochemical detection schemes are well suited for the detection of neurotransmitters in vivo because of their inherent fast time response, and ability to investigate small regions using ultramicroelectrode technologies. Traditionally, in vivo neurotransmitter detection has been done at a carbon-fiber microelectrode; which has proven to be the optimal electrochemical biosensor for its small size, wide potential window, and anti-biofouling properties. Though much has been learned though the use of the carbon fiber microelectrode, it only possesses the ability to observe a single microenvironment in vivo. Arrays of electrochemical detectors could, therefore, prove to be very useful in vivo, enabling the study of multiple microenvironments simultaneously.;This research aims to create a robust fabrication process for the creation of a device that enables multi-site detection of neurotransmitters in vivo. Gold microelectrodes were investigated as a possible alternative to carbon-fibers because of the material's compatibility with microfabrication techniques and surface modifications; which would enable the easy fabrication of array based technology. The gold microelectrodes, like the carbon-fiber, were found to be compatible with the electrochemical technique of fast scan cyclic voltammetry (FSCV); which allowed for the selective detection and identification of neurotransmitters in vitro. The gold microelectrodes could not, however, outperform the carbon fiber in vivo; thus future studies focused on carbon based fabrication strategies.;To ensure that array based technologies were viable in vivo, an array of carbon fiber microelectrodes were fabricated using both traditional fabrication and microfabrication strategies. This device implemented carbon fiber microelectrodes, fabricated using fused silica capillaries rather than borosilicate glass, in a microfabricated spacer. The spacer enabled the precise placement of the individual carbon fiber electrodes within a small space (1 mm). The device was then used in vivo to observe multisite neurotransmitter release and the multisite effect of pharmacological agents on the D2 autoreceptor (raclopride) and dopamine transporter (cocaine).;Further research was dedicated to the batch fabrication of carbon based arrays. Pyrolyzed photoresist thin films (PPF) were investigated as a possible alternative to carbon fibers for array based detection, as PPF is directly compatible with photolithography and theorized to be structurally similar to the carbon fiber. Arrays of PPF ultramicroelectrodes were constructed using microfabrication techniques and compared to carbon fibers using FSCV in vitro. The PPF arrays were able to detect and identify the neurotransmitter dopamine with comparable sensitivity and selectivity in vitro. The usefulness of the arrays was demonstrated in its ability to perform multisite detection of dopamine and the electrochemically decoupled detection of dopamine and oxygen fluctuations.;A microfabrication strategy was subsequently developed around the PPF thin film to produce devices that were of suitable dimensions for in vivo use. The batch fabrication process robustly yielded thin silicon probes that enabled the in vivo multisite detection of electrically stimulated dopamine release. Using these devices, dopamine release and reuptake was shown to be heterogeneous throughout the striatum under both normal and pharmacologically altered conditions.
机译:电化学检测方案因其固有的快速响应时间以及使用超微电极技术研究小区域的能力,非常适合于体内神经递质的检测。传统上,体内神经递质的检测是在碳纤维微电极上完成的。由于其体积小,电位窗口宽和具有抗生物结垢特性,已被证明是最佳的电化学生物传感器。尽管通过使用碳纤维微电极已经学到了很多东西,但它仅具有在体内观察单个微环境的能力。因此,电化学检测器阵列可能被证明在体内非常有用,从而可以同时研究多种微环境。这项研究的目的是为创建一种能够在体内对神经递质进行多部位检测的装置创造可靠的制造过程。 。由于金与微加工技术和表面改性的相容性,金微电极已被研究作为碳纤维的一种可能替代品。这将使基于阵列的技术的制造变得容易。发现金微电极(如碳纤维)与快速扫描循环伏安法(FSCV)的电化学技术兼容。可以选择性地检测和鉴定体外的神经递质。但是,金微电极在体内不能胜过碳纤维。因此,未来的研究将重点放在基于碳的制造策略上。为了确保基于阵列的技术在体内可行,使用传统的制造策略和微制造策略来制造碳纤维微电极阵列。该设备在微型隔板中实现了碳纤维微电极,该碳纤维微电极是使用熔融石英毛细管而不是硼硅酸盐玻璃制造的。垫片使单个碳纤维电极能够在较小的空间(<1毫米)内精确放置。然后将该装置用于体内观察多部位神经递质的释放,以及药理剂对D2自身受体(雷洛必利)和多巴胺转运蛋白(可卡因)的多部位作用。研究了热解光致抗蚀剂薄膜(PPF)作为基于阵列检测的碳纤维的可能替代方法,因为PPF与光刻技术直接兼容,并且在理论上与碳纤维结构相似。使用微加工技术构建PPF超微电极阵列,并在体外使用FSCV与碳纤维进行比较。 PPF阵列能够在体外以相当的灵敏度和选择性检测和鉴定神经递质多巴胺。该阵列的用途证明了其能够对多巴胺进行多点检测以及对多巴胺和氧气波动进行电化学解耦检测的能力。随后,围绕PPF薄膜开发了一种微细加工策略,以生产出适合体内尺寸的器件采用。批生产过程稳健地产生了薄的硅探针,该探针能够在体内对电刺激的多巴胺释放进行多部位检测。使用这些装置,在正常和药理改变的条件下,整个纹状体的多巴胺释放和再摄取均显示为异质的。

著录项

  • 作者

    Zachek, Matthew Kendrick.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号