首页> 外文学位 >Multi-scale finite element modeling of strain localization in geomaterials with strong discontinuity.
【24h】

Multi-scale finite element modeling of strain localization in geomaterials with strong discontinuity.

机译:具有不连续性的土工材料中应变局部化的多尺度有限元建模。

获取原文
获取原文并翻译 | 示例

摘要

Geomaterials such as soils and rocks undergo strain localization during various loading conditions. Strain localization manifests itself in the form of a shear band, a narrow zone of intense straining. It is now generally recognized that these localized deformations lead to an accelerated softening response and influence the response of structures at or near failure. In order to accurately predict the behavior of geotechnical structures, the effects of strain localization must be included in any model developed. In this thesis, a multi-scale Finite Element (FE) model has been developed that captures the macro- and micro-field deformation patterns present during strain localization.; The FE model uses a strong discontinuity approach where a jump in the displacement field is assumed. The onset of strain localization is detected using bifurcation theory that checks when the governing equations lose ellipticity. Two types of bifurcation, continuous and discontinuous are considered. Precise conditions for plane strain loading conditions are reported for each type of bifurcation. Post-localization behavior is governed by the traction relations on the band. Different plasticity models such as Mohr-Coulomb, Drucker-Prager and a Modified Mohr-Coulomb yield were implemented together with cohesion softening and cutoff for the post-localization behavior.; The FE model is implemented into a FORTRAN code SPIN2D-LOC using enhanced constant strain triangular (CST) elements. The model is formulated using standard Galerkin finite element method, applicable to problems under undrained conditions and small deformation theory. A band-tracing algorithm is implemented to track the propagation of the shear band.; To validate the model, several simulations are performed from simple compression test of soft rock to simulation of a full-scale geosynthetic reinforced soil wall model undergoing strain localization. Results from both standard and enhanced FE method are included for comparison. The resulting load-displacement curves show that the model can represent the softening behavior of geomaterials once strain localization is detected. The orientation of the shear band is found to depend on both the friction and dilation angle of the geomaterial. For most practical problems, slight mesh dependency can be expected but is associated with the standard FE interpolation rather than the strong discontinuity enhancements.
机译:诸如土壤和岩石之类的岩土材料在各种载荷条件下都会发生应变局部化。应变局部化表现为剪切带的形式,即狭窄的强烈应变区域。现已普遍认识到,这些局部变形导致加速的软化响应并影响失效或接近失效时结构的响应。为了准确预测岩土结构的行为,必须在开发的任何模型中包括应变局部化的影响。本文建立了一个多尺度有限元(FE)模型,该模型捕获了应变局部化过程中出现的宏观和微观场变形模式。有限元模型使用强不连续性方法,其中假设位移场发生跳跃。使用分叉理论检测应变局部化的开始,该理论检查控制方程何时失去椭圆率。分叉的类型有两种,连续的和不连续的。报告了每种分叉类型的平面应变载荷条件的精确条件。定位后的行为受频段上的牵引关系控制。实施了不同的可塑性模型,例如Mohr-Coulomb,Drucker-Prager和改良的Mohr-Coulomb产量以及内聚后的定位行为,以及内聚力软化和截止。使用增强的恒定应变三角形(CST)元素将FE模型实现为FORTRAN代码SPIN2D-LOC。该模型使用标准Galerkin有限元方法制定,适用于不排水条件和小变形理论下的问题。实施带跟踪算法以跟踪剪切带的传播。为了验证该模型,从简单的软岩压缩试验到模拟完整的土工合成加筋土墙承受应变局部化模型,进行了一些模拟。包括标准和增强有限元方法的结果进行比较。由此产生的载荷-位移曲线表明,一旦检测到应变局部化,该模型就可以代表土工材料的软化行为。发现剪切带的方向取决于土工材料的摩擦力和膨胀角。对于大多数实际问题,可以预期会出现轻微的网格相关性,但这与标准的FE插值相关,而与不连续性增强无关。

著录项

  • 作者

    Lai, Timothy Yu.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Applied Mechanics.; Engineering Civil.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用力学;建筑科学;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号