首页> 外文学位 >Somatic cell models of epigenetic changes in colorectal cancer.
【24h】

Somatic cell models of epigenetic changes in colorectal cancer.

机译:大肠癌表观遗传变化的体细胞模型。

获取原文
获取原文并翻译 | 示例

摘要

Alterations in genes regulating growth and genetic stability are central to the development of all common forms of human cancer. It is now recognized that such alterations comprise epigenetic modifications as well as genetic lesions. For example, the inactivation of tumor supressor genes appears to result from epigenetic silencing associated with hypermethylation rather than intragenic mutations in many cases. The enzymes responsible for methylating specific tumor suppressor genes, as well as maintaining global methylation patterns, in human cells are unclear. In mouse cells, the prototypic DNA methyltransferase, Dnmt1, is responsible for most methylation, and it has been widely assumed that DNMT1 is likewise responsible for most methylation of the human genome, including the abnormal methylation found in cancers. To rigorously test this hypothesis, we disrupted the DNMT1 gene through homologous recombination in human colorectal carcinoma cells. These human cells lacking DNMT1 exhibited only a 20% decrease in overall genomic methylation. Though juxtacentromeric satellites became markedly demethylated, most loci analyzed, including the tumor suppressor gene p16INK4a, remained fully methylated and silenced. The human DNMT3b gene was likewise disrupted in the same carcinoma cell line. This disruption had little effect on the level of DNA methylation, reducing it by 3%. Surprisingly, however, concurrent genetic disruption of both DNMT1 and DNMT3b resulted in dramatic effects on DNA methylation, nearly eliminating methyltransferase activity and reducing genomic DNA methylation by >95%. These changes resulted in demethylation of repeated sequences, loss of IGF2 imprinting, abrogation of silencing of the tumor suppressor gene p16INK4a, and growth suppression. These results derived from our human somatic cell models of methyltransferase function demonstrate that two enzymes cooperatively maintain DNA methylation and epigenetic silencing in human cancer cells and provide compelling evidence that such methylation is essential for optimal neoplastic proliferation.
机译:调节生长和遗传稳定性的基因改变对人类癌症的所有常见形式的发展至关重要。现在已经认识到,这种改变包括表观遗传修饰以及遗传损伤。例如,在许多情况下,肿瘤抑制基因的失活似乎是由于与高甲基化有关的表观遗传沉默而不是基因内突变引起的。目前尚不清楚负责人类细胞中特定肿瘤抑制基因甲基化以及维持整体甲基化模式的酶。在小鼠细胞中,原型DNA甲基转移酶Dnmt1负责大多数甲基化,并且广泛认为DNMT1同样负责人类基因组的大多数甲基化,包括在癌症中发现的异常甲基化。为了严格检验该假设,我们通过人大肠癌细胞中的同源重组破坏了 DNMT1 基因。这些缺少 DNMT1 的人类细胞的整体基因组甲基化仅降低了20%。尽管近端着丝粒卫星显着去甲基化,但分析的大多数基因座,包括抑癌基因 p16 INK4a ,仍完全甲基化且沉默。人的 DNMT3b 基因同样在同一癌细胞系中被破坏。这种破坏对DNA甲基化水平影响很小,降低了<3%。但是,令人惊讶的是,同时 DNMT1 DNMT3b 的遗传破坏对DNA甲基化产生了显着影响,几乎消除了甲基转移酶活性,并使基因组DNA甲基化降低了95%以上。这些变化导致重复序列的去甲基化, IGF2 印迹的丧失,肿瘤抑制基因 p16 INK4a 的沉默的消除和生长抑制。从我们的人类体细胞甲基转移酶功能模型得出的这些结果表明,两种酶共同维持人类癌细胞中的DNA甲基化和表观遗传沉默,并提供令人信服的证据表明这种甲基化对于最佳的肿瘤增殖至关重要。

著录项

  • 作者

    Rhee, Ina Park.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Biology Genetics.; Biology Molecular.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 98 p.
  • 总页数 98
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 遗传学;分子遗传学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号