首页> 外文学位 >Random walks, trees and extensions of Riordan group techniques.
【24h】

Random walks, trees and extensions of Riordan group techniques.

机译:随机漫步,树木和Riordan小组技术的扩展。

获取原文
获取原文并翻译 | 示例

摘要

The Catalan number sequence 1,1,2,5,14,42,&ldots;,1n+1 2nn,&ldots; is one of the most important sequences in all of enumerative combinatorics. Richard Stanley cites at least 66 combinatorial settings where the sequence appears [7]. Among the numerous interpretations of the Catalan numbers, we have the number of paths restricted to the first quadrant of the x, y-plane starting at (0, 0) and ending at (2n, 0) using “up” steps (1,1) or “down” steps (1, −1) (known as Dyck paths). This research will focus on a generalization of the Catalan numbers which can be interpreted as taking Dyck paths and perturbing the length of the down step. One particular example of this generalization is given by the sequence of numbers known as the ternary numbers, 1,1,3,12,55,273,1428,7752,43263,&ldots;,1 2n+13nn ,&ldots;. This sequence arises in many natural contexts and extensions of known results related to combinatorial objects such as paths, trees, permutations, partitions, Young tableaux and dissections of convex polygons. Hence, we use this sequence as an important example of something which lies on the boundary of what is known and what is new. Much of this research is an attempt to extend many of the known results for the Catalan numbers to ternary and m-ary numbers.; In this dissertation, we establish, in the setting of the ternary numbers, several analogues to the better known Catalan numbers setting. We present an analogue to the Chung-Feller Theorem which says that for paths from (0, 0) to (3n, 0) with step set {lcub}(1,1), (1, −2){rcub}, the number of up (1,1) steps above the x-axis is uniformly distributed. We also present analogues to the Binomial, Motzkin and Fine generating functions and discuss combinatorial interpretations of each. In addition, we establish some computational results regarding the area bounded by ternary paths and the number of returns to the x-axis. We also present generating function proofs for the area under Dyck and ternary paths, an interesting connection to weighted trees, and a conjecture for a closed form generating function for the area under ternary paths.
机译:加泰罗尼亚语编号序列 1,1,2,5,14,42,&ldots;, 1 n + 1 2n n ,&ldots ; 是所有枚举组合中最重要的序列之一。理查德·斯坦利(Richard Stanley)引用了至少66种组合设置,其中出现了序列[7]。在对加泰罗尼亚数的众多解释中,我们将路径的数目限制为 x,y 平面的第一象限,其起点为(0,0),终点为(2 n ,0)使用“向上”步骤(1,1)或“向下”步骤(1,-1)(称为Dyck路径)。这项研究将集中在加泰罗尼亚数的一般化上,这可以解释为采用戴克路径并扰动下降步长。这种概括的一个特定示例由称为三元数的数字序列给出, 1,1,3,12,55,273,1428,7752,43263,&l,< fr> 1 2n + 1 3n n ,&ldots;。 此序列出现在许多自然环境中,并且涉及与组合相关的已知结果对象,例如路径,树木,置换,分区,Young tableaux和凸多边形的解剖。因此,我们将此序列用作位于已知和新事物边界上的某些事物的重要示例。这项研究大部分是试图将加泰罗尼亚数的许多已知结果扩展到三进制和 m -ary数。在本文中,我们在三元数的设置中建立了与已知的加泰罗尼亚数设置相似的几种类似物。我们给出了Chung-Feller定理的一个类似物,它表示从(0,0)到(3 n ,0)的路径,步长为{lcub}(1,1),(1, −2){rcub},在 x 轴上方的向上(1,1)步数是均匀分布的。我们还介绍了二项式,Motzkin和Fine生成函数的类似物,并讨论了每种函数的组合解释。此外,我们建立了一些关于三元路径边界的面积和 x 轴的返回数的计算结果。我们还介绍了Dyck和三元路径下区域的生成函数证明,与加权树的有趣连接以及三元路径下区域的封闭形式生成函数的猜想。

著录项

  • 作者

    Cameron, Naiomi Tuere.;

  • 作者单位

    Howard University.;

  • 授予单位 Howard University.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 67 p.
  • 总页数 67
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号