首页> 外文学位 >Radiation source modeling for Monte Carlo based treatment planning systems.
【24h】

Radiation source modeling for Monte Carlo based treatment planning systems.

机译:基于蒙特卡洛的治疗计划系统的辐射源建模。

获取原文
获取原文并翻译 | 示例

摘要

In this study, we introduce a method to determine the energy spectrum delivered by a medical accelerator. The method relies on both Monte Carlo generated data and experimental measurements, but requires far fewer measurements than current attenuation-based methods, and much less information about the construction of the linear accelerator than full Monte Carlo based estimations, making it easy to perform in a clinical environment.; The basic model used in this work makes use of the quantum absorption efficiency concept, which gives the probability that a photon of energy hn will deposit energy in a detector (film-screen detector in our case). Mathematically, our model is given by: M=Y0>T dYhn dhn Eavghne hndhn where M is the absorbed energy in the film-screen detector, dYhn dhn is the photon spectrum, Eavghn is the average energy deposited per interacting photon, and ehn is the quantum absorption efficiency, and Y is the total photon fluence striking the detector. ehn and Eavghn were calculated by means of Monte Carlo simulation using the code MCNPX.; The method works as follows: first, the primary photon fluence exiting the target is calculated from first principles by dividing the target into thin slabs (50–100μm) and adding the bremsstrahlung contribution from each slab.; The electron fluence is calculated using the Phase Space Time Evolution Model, first proposed by Cordaro et al. and further refined by Huizenga et al. Ray tracing is used to attenuate the primary photon fluence as it passes through the flattening filter on its way to the detectors. Based on a detailed study of linear accelerator head scatter and of the known weaknesses of the Schiff cross-section we propose a multiplicative, energy-dependent empirical correction factor fa,hn=exp ahn to take into account the head scatter energy fluence, where a is a free parameter that is fixed by comparing the energy deposited in a screen-film detector irradiated by the spectrum in question to the theoretical prediction of the equation above. Since we do not know what the total fluence per monitor unit is striking the detector, we use two screen-film systems, with different quantum absorption efficiencies to determine the a parameter. The detectors used are a 1mm copper plate attached to a Lanex Regular Gd2O 2S screen and a 1mm Aluminum plate attached to the same type of screen. These two detectors were characterized by means of Monte Carlo simulation.
机译:在这项研究中,我们介绍了一种确定医疗加速器传递的能谱的方法。该方法既依赖于蒙特卡洛生成的数据,又依赖于实验测量,但与基于当前衰减的方法相比,所需的测量要少得多,并且与基于蒙特卡洛的完整估算相比,所需的线性加速器信息也要少得多,这使得它可以轻松地实现临床环境。这项工作中使用的基本模型利用了量子吸收效率的概念,它给出了能量 h n 的光子沉积的可能性探测器(在我们的例子中为电影屏幕探测器)中的能量。从数学上讲,我们的模型由下式给出: M = Y 0 > T < / ul> d Y h n d h n E avg h n e h n d h n 其中M是电影屏幕检测器中的吸收能量, d < g> Y h n d h n 是光子光谱, E avg h n 是平均能量每个相互作用的光子和 e h n < / f> 是量子吸收效率, Y 是总光子注量密度国王的探测器。 e h n E avg h n 是使用代码MCNPX通过Monte Carlo仿真计算的;该方法的工作原理如下:首先,通过将目标划分为薄板(50-100μm)并从每个板中加上the致辐射的贡献,根据第一原理计算出离开目标的主要光子通量。电子能量密度是使用由Cordaro等人首先提出的相时空演化模型计算的。并由Huizenga等人进一步完善。光线追踪用于衰减初级光子通量,因为它在通过平坦滤波器到达检测器的过程中会通过。基于对线性加速器头部散射和席夫(Schiff)横截面的已知弱点的详细研究,我们提出了一个乘性的,依赖于能量的经验校正因子 f a ,h n = exp a h n 来考虑头部散射能量通量,其中 a 是自由参数,通过比较光谱辐照在屏幕胶片检测器中沉积的能量来固定对上述方程的理论预测有疑问。由于我们不知道每个监控器的总通量会影响探测器,因此我们使用两个具有不同量子吸收效率的屏幕胶片系统来确定 a 参数。所使用的检测器是连接到Lanex常规 Gd 2 O 2 <的1 mm 铜板。 / sub> S 屏幕和连接到同一类型屏幕的1 mm 铝板。这两个检测器通过蒙特卡洛模拟进行了表征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号