首页> 外文学位 >Time-warping and convex synchronization for random curves, with applications to biological functional data.
【24h】

Time-warping and convex synchronization for random curves, with applications to biological functional data.

机译:随机曲线的时间扭曲和凸同步,并应用于生物学功能数据。

获取原文
获取原文并翻译 | 示例

摘要

In biological, chemical or physical experiments, data that can be best described as a sample of curves are now fairly common. When the dynamics of development, growth or response over time are at issue, subjects or experimental units may experience events at a different temporal pace. For functional data where trajectories may be individually time-transformed, it is usually inadequate to use commonly employed sample statistics for curves such as cross-sectional mean or median, or cross-sectional sample variance. Previous analysis of time warping which was motivated from speech recognition has typically not been based on a model where individual observed curves are viewed as realization of a stochastic process.; We propose a functional convex synchronization model, under the premise that each observed curve is the realization of a stochastic process. Monotonicity constraints on time evolution provide the motivation for a functional convex calculus with the goal of obtaining sample statistics such as a functional mean. A model has been developed where observed random functions are assumed to have a randomly warped time scale. They are described by a latent bivariate random process that consists of a time transformation function and an amplitude function. Estimates and algorithms have been developed within the framework of this model. Important applications are the definition of a longitudinal sample mean (as opposed to the cross-sectional sample mean), the estimation of time warping functions for individual subjects and groups of subjects, and a synchronized mean update algorithm to find mode functions for samples of time-warped stochastic processes. We discuss various examples of functional convex averaging. The methods are illustrated with simulated data and mRNA gene expression microarray data. Theoretical motivation is provided by an asymptotic functional limit theorem, which can be used to construct asymptotic confidence bands for the functional convex mean function.
机译:在生物学,化学或物理实验中,可以最好地描述为曲线样本的数据现在相当普遍。当有关发展,增长或随时间变化的动态问题时,受试者或实验单位可能会经历不同时间节奏的事件。对于轨迹可以单独进行时间转换的功能数据,通常不足以将常用的样本统计信息用于曲线,例如横截面均值或中位数或横截面样本方差。先前基于语音识别而引起的时间扭曲分析通常不是基于将个体观察到的曲线视为实现随机过程的模型。我们提出了一个功能凸同步模型,其前提是每个观察到的曲线都是一个随机过程的实现。时间演化的单调性约束为函数凸演算提供了动力,其目的是获得样本统计信息,例如函数均值。已经开发了一个模型,其中假定观察到的随机函数具有随机扭曲的时间尺度。它们由潜在的二元随机过程描述,该过程由时间转换函数和幅度函数组成。在此模型的框架内已开发了估计和算法。重要的应用是定义纵向样本均值(而不是横截面样本均值),估计单个主题和主题组的时间扭曲函数以及同步均值更新算法以找到时间样本的模式函数扭曲的随机过程。我们讨论了函数凸平均的各种示例。用模拟数据和mRNA基因表达微阵列数据说明了该方法。渐近泛函极限定理提供了理论动机,可用于构造泛函凸均值函数的渐近置信带。

著录项

  • 作者

    Liu, Xueli.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Statistics.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 81 p.
  • 总页数 81
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 统计学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号