首页> 外文学位 >First principles modeling of non-equilibrium gas phase environments for aluminum nitride and diamond growth from the vapor.
【24h】

First principles modeling of non-equilibrium gas phase environments for aluminum nitride and diamond growth from the vapor.

机译:非平衡气相环境的第一原理建模,用于氮化铝和金刚石从蒸汽中生长。

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this research has been to understand, at a fundamental level, non-equilibrium gas-phase environments for the vapor deposition of crystals and thin films. This study is based on three fundamental insights: (1) existence of a chemical potential minimum in the gas phase as a function of temperature for crystal and thin film growth from the vapor; (2) the approximation of non-equilibrium gas phase environments by a combination of statistical mechanical states in local equilibrium (i.e. a state in chemical equilibrium at each temperature); (3) the construction of appropriate combinations of statistical states based on their chemical potential for some given growth conditions. Using these insights we established two ab initio non-equilibrium models describing the gas phase environments for AlN and diamond growth.; Our gas phase model for AlN sublimation growth contains 62 species and 3 statistical states. The following new information regarding AlN crystal growth was obtained from the model. (1) AlmN (m = 1,2,3,4) and Alm (m = 1,2,3) species are supersaturated in the crystal layer and therefore are proposed as growth precursors; N2 is undersaturated and therefore it is not likely a precursor. (2) A transition temperature, Tt, was identified that characterizes growth conditions. It is the temperature at which the AlN source vaporization pressure is equal to the inlet N2 pressure. (3) Optimal source temperature and the total temperature difference DeltaT between the source and crystal are interpreted in terms of Tt. The model can quantitatively interpret all available experiments.; Our gas phase model for diamond deposition focuses on the pure hydrogen system, which we assert contains the dominant features of typical growth conditions. In the model there are H atoms and rovibrationally excited H2molecules, which together form 143 metastable statistical states.; This unified model provides the following new insights: (1) Supersaturated H atoms produced at the filament surface are stabilized in the entire gas phase due to the existence of metastable statistical states that are caused by rovibrationally excited H2. (2) The overall non-equilibrium concentration of rovibrationally excited H2 is maximized due to the existence of supersaturated H atoms. (3) The formation of temperature drops is related to the spontaneously chemical process. All observed "irregular" temperature drops are further classified into four cases. (4) The discrepancy among experimentally measured effective activation energies for H atom production is interpreted based on the embedded relation among filament temperature, gas-phase temperature, total pressure and concentration distributions in the unified model. (5) The mechanism of acetylene conversion to methane is attributed to rovibrationally excited H2 addition chemistry due to states |v = 2, J = 1 > ∼ |v = 3, J = 1 > of H2. (Abstract shortened by UMI.)
机译:这项研究的目的是从根本上理解晶体和薄膜气相沉积的非平衡气相环境。这项研究基于三个基本见解:(1)气相中化学势最小值的存在与温度的关系,该气相温度是晶体和薄膜从蒸汽中生长的结果; (2)通过结合局部平衡状态下的统计机械状态(即在每个温度下处于化学平衡状态)来近似非平衡气相环境; (3)在某些给定的生长条件下,根据其化学势构建适当的统计状态组合。利用这些见解,我们建立了两个从头开始的非平衡模型,描述了AlN和金刚石生长的气相环境。我们用于AlN升华生长的气相模型包含62种和3种统计状态。从模型中获得了以下有关AlN晶体生长的新信息。 (1)AlmN(m = 1,2,3,4)和Alm(m = 1,2,3)物种在晶体层中过饱和,因此被提议为生长前体; N2饱和不充分,因此它不太可能是前体。 (2)确定了表征生长条件的转变温度Tt。 AlN源气化压力等于入口N2压力的温度。 (3)最佳源温度和源与晶体之间的总温差DeltaT用Tt表示。该模型可以定量解释所有可用的实验。我们用于金刚石沉积的气相模型关注于纯氢系统,我们断言该系统包含典型生长条件的主要特征。在该模型中,有H原子和由激发态激发的H2分子,它们共同形成143个亚稳态统计状态。这种统一的模型提供了以下新见解:(1)由于存在由动荡激发的H2引起的亚稳态统计状态,因此在整个气相中,在灯丝表面产生的过饱和H原子得以稳定。 (2)由于存在过饱和的H原子,所以被激波激发的H2的整体非平衡浓度最大。 (3)温度下降的形成与自发化学过程有关。将所有观察到的“不规则”温度下降进一步分为四种情况。 (4)在统一模型中,基于灯丝温度,气相温度,总压力和浓度分布之间的嵌入关系,解释了实验测得的产生H原子的有效活化能之间的差异。 (5)乙炔转化为甲烷的机理归因于H2的状态| v = 2,J = 1>〜| v = 3,J = 1>,是由氢激发的H2加成化学。 (摘要由UMI缩短。)

著录项

  • 作者

    Li, Yanxin.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Materials Science.; Chemistry Physical.; Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 243 p.
  • 总页数 243
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号