首页> 外文学位 >Moving parts of voltage-gated sodium channels.
【24h】

Moving parts of voltage-gated sodium channels.

机译:电压门控钠通道的运动部件。

获取原文
获取原文并翻译 | 示例

摘要

Modeling the behavior of voltage-gated sodium channels requires gating schemes that consist of kinetics states in coupled, voltage-dependent equilibria. Each kinetic transition in such a scheme in presumed to correspond to a conformational change at the level of the current-conducting alpha-subunit of the channel protein. Because the kinetic models are underdetermined by the ionic currents, monitoring the movements of the protein directly can provide grounds for elimination of a subset of the possible gating schemes. The experiments in this thesis were organized around this principle.; Conformational markers for gating transitions were generated by engineering cysteine residues at specific sites in the cDNA of the rat adult skeletal muscle sodium channel alpha-subunit, and monitoring changes in reactivity of the substituted cysteines with methanethiosulfonate (MTS) reagents under voltage clamp in excised macropatches. Accessibility changes that correlated with gating transitions were used as conformational markers to probe movements of sodium channel gates that do not involve changes in the ionic currents.; In the experiments described in Chapter 3, a cysteine mutant was engineered into the sodium channel III-IV interdomain at a residue known to be important for fast inactivation gating, F1304. The voltage-dependence of the reaction rate of F1304C with an MTS reagent correlated with fast inactivation, and was used to monitor the position of the fast inactivation gate during slow inactivation. We found that both the fast and slow inactivation gates can be closed simultaneously, and that recovery from fast inactivation is not altered in slow-inactivated channels. The Appendix describes further experiments in which this conformational marker was used to probe the relationship between lidocaine binding and fast inactivation. We found, contrary to many models of lidocaine action, that use-dependent block does not involve accumulation of fast inactivated channels. Based on these results and previous work, a kinetic model of lidocaine action is proposed.; Chapter 4 discusses a series of cysteine mutants engineered into the voltage-sensing S4 segments. We found reactivity changes in three of these mutants (R663C in IIS4, R1128C in IIIS4, and R1447C in IVS4) consistent with outward movement of the S4 segments during depolarization. Although our experiments are preliminary, we found evidence of slow movement in IIS4, and found that IVS4, the voltage-sensor associated with fast inactivation, moves freely in slow-inactivated channels, consistent with the results of Chapter 3.; Chapter 5 presents a series of experiments designed to find conformational markers for activation gating in the putative inner vestibule of the sodium channel (segment IVS6). Though none of the four mutants we tested (L1580C, I1581C, V1582C, and V1583C) showed activation-associated movements, one of them, V1583C, revealed both a rapid conformational change coupled to fast inactivation and a slow movement closely associated with slow inactivation. Batrachotoxin, an inhibitor of both fast and slow inactivation, protected the site from modification, suggesting that the movements at site 1583 are important for gating, and that the toxin may work by preventing them.
机译:对电压门控钠通道的行为进行建模需要一种门控方案,该方案应包括耦合的,电压依赖性平衡态的动力学状态。假定这种方案中的每个动力学转变都对应于通道蛋白的电流传导α-亚基水平的构象变化。因为动力学模型是由离子电流所决定的,所以直接监测蛋白质的运动可以为消除部分可能的门控方案提供依据。本文的实验是围绕这一原理进行的。通过在大鼠成年骨骼肌钠通道α亚基的cDNA特定位点工程化半胱氨酸残基,并在电压钳制下监控切除的半胱氨酸与甲硫代磺酸盐(MTS)的反应性变化,来生成门控转换的构象标记。 。与门控转换相关的可及性变化被用作构象标记,以探测不涉及离子电流变化的钠通道门的运动。在第3章中描述的实验中,将半胱氨酸突变体工程化到钠通道III-IV互域中的一个已知对快速灭活门控重要的残基F1304。 F1304C与MTS试剂的反应速率与电压的相关性与快速灭活有关,并用于监视慢速灭活期间快速灭活门的位置。我们发现快速和慢速灭活门都可以同时关闭,并且从慢速灭活通道中快速灭活的恢复不会改变。附录描述了进一步的实验,其中使用该构象标记物探查利多卡因结合与快速失活之间的关系。我们发现,与许多利多卡因作用模型相反,使用依赖的阻滞不涉及快速灭活通道的积累。基于这些结果和先前的工作,提出了利多卡因作用的动力学模型。第4章讨论了一系列改造成电压感应S4段的半胱氨酸突变体。我们发现这三个突变体中的反应性变化(IIS4中的R663C,IIIS4中的R1128C和IVS4中的R1447C)与去极化过程中S4段的向外移动一致。尽管我们的实验是初步的,但我们发现了IIS4中缓慢移动的证据,并发现与快速失活相关的电压传感器IVS4在缓慢失活的通道中自由移动,与第3章的结果一致。第5章介绍了一系列旨在寻找构象标记物的实验,这些构象标记物用于在钠通道的假定内部前庭(段IVS6)中激活门控。尽管我们测试的四个突变体(L1580C,I1581C,V1582C和V1583C)均未显示与激活相关的运动,但其中一个V1583C既显示了快速构象变化与快速灭活有关,又显示了慢速运动与缓慢灭活密切相关。 Batrachotoxin是一种快速灭活和慢速灭活的抑制剂,可保护该部位免受修饰,这表明1583部位的运动对于门控非常重要,并且该毒素可以通过阻止它们起作用。

著录项

  • 作者

    Vedantham, Vasanth.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Biology Neuroscience.; Biophysics General.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 165 p.
  • 总页数 165
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 神经科学;生物物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号