首页> 外文学位 >Dynamic modeling for machine tool thermal error compensation.
【24h】

Dynamic modeling for machine tool thermal error compensation.

机译:机床热误差补偿的动态建模。

获取原文
获取原文并翻译 | 示例

摘要

Machine tool thermal errors are one of the most significant factors affecting the accuracy of machine tools. They can be compensated for through a model-based approach. However, the lack of accuracy and robustness of thermal error models prevents the thermal error compensation from achieving greater success. The objective of this research is to develop a new dynamic modeling methodology to improve the accuracy and robustness of the thermal error models. This research consists of the following components: (1) The analysis of the dynamics of the thermo-elastic systems, (2) non-stationary multivariable system identification, (3) part-oriented machine-error calibration, (4) on-line model adaptation, and (5) the identification of nonlinear thermo-elastic systems.; The analysis of the dynamic characteristics of the machine thermo-elastic systems reveals that the pseudo-hysteresis effect is a major factor causing poor robustness of the conventional static models. A dynamic modeling methodology is therefore developed, based on the system identification theory, in order to capture the system dynamics. The procedure for the dynamic modeling includes input variable screening, model structure determination and model validation. In addition, due to the non-stationary nature of the thermo-elastic systems, a time-varying system identification methodology is developed. Based on a part-oriented thermal error calibration methodology developed for fulfilling the fast measurement requirement of the dynamic thermal error modeling, time-varying thermal errors of a face-milling process with large process variations are successfully tracked and modeled.; Since the pre-process trained thermal-error model may not be accurate and robust enough in long term, a model self-adaptation system is developed in order to continuously update the model, using process-intermittent measurements. The recursive model adaptation, based on the Kalman filter and multiple-sampling horizons, minimizes intrusion to production while maintaining good model adaptation capability. Nonlinearity is another major factor influencing model estimation accuracy. A new neural network modeling strategy, called the Integrated Recurrent Neural Network, is applied to identify the dynamics, nonlinearity and non-stationarity of the thermo-elastic systems. Experimental results prove that the dynamic models thus developed show great advantages over the conventional static models in terms of model accuracy and robustness for different working conditions.
机译:机床热误差是影响机床精度的最重要因素之一。可以通过基于模型的方法对其进行补偿。但是,由于缺少热误差模型的准确性和鲁棒性,因此无法成功实现热误差补偿。这项研究的目的是开发一种新的动态建模方法,以提高热误差模型的准确性和鲁棒性。这项研究包括以下组成部分:(1)热弹性系统动力学分析,(2)非平稳多变量系统识别,(3)面向零件的机器误差校准,(4)在线模型适应,以及(5)非线性热弹性系统的识别;对机器热弹性系统动力学特性的分析表明,伪磁滞效应是导致常规静态模型鲁棒性较差的主要因素。因此,基于系统识别理论,开发了一种动态建模方法,以捕获系统动态。动态建模的过程包括输入变量筛选,模型结构确定和模型验证。另外,由于热弹性系统的非平稳性,开发了时变系统识别方法。基于为满足动态热误差建模的快速测量要求而开发的面向零件的热误差校准方法,成功地跟踪和建模了具有较大工艺变化的面铣加工的时变热误差。由于预处理训练后的热误差模型可能无法长期保持足够的准确性和鲁棒性,因此开发了一种模型自适应系统,以便使用过程间歇性测量来连续更新模型。基于卡尔曼滤波器和多重采样范围的递归模型适应,可在保持良好的模型适应能力的同时,最大限度地减少对生产的入侵。非线性是影响模型估计精度的另一个主要因素。一种新的神经网络建模策略,称为集成递归神经网络,被用于识别热弹性系统的动力学,非线性和非平稳性。实验结果证明,所开发的动态模型在不同工作条件下的模型精度和鲁棒性方面均优于常规静态模型。

著录项

  • 作者

    Yang, Hong.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Mechanical.; Engineering Industrial.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 142 p.
  • 总页数 142
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;一般工业技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号