首页> 外文学位 >Phase change phenomena in silicon microchannel heat sinks for IC chip cooling.
【24h】

Phase change phenomena in silicon microchannel heat sinks for IC chip cooling.

机译:用于IC芯片冷却的硅微通道散热器中的相变现象。

获取原文
获取原文并翻译 | 示例

摘要

There is significant current interest in new technologies for IC cooling; this interest is driven by the rapid increase in power densities in ICs and the trend towards high-density electronic packaging for applications throughout civilian and military markets. In accordance with the Moore's Law, the number of transistors on Intel Pentium processors increased from 7.5 × 10 6 in 1997 (Pentium II) to 42 × 106 in 2000 (Pentium 4). Accordingly, thermal management must be well designed to ensure proper functioning of these high-speed, high-power chips. Forced air convection has been traditionally used to remove the heat through a large heat sink and fan module. Currently, with 75 W power dissipation rate, or approximately 45 W/cm 2 heat flux, from a Pentium 4 processor with 2 GHz core frequency, the noise generated from high rotating speed fans is approaching the limit of acceptable level for human operation. However, the power dissipation level from a single high performance chip is expected to exceed 100 W/cm 2 by the year 2005, when the air cooling has to be replaced by new cooling technologies.; Among alternative cooling methods, pumped liquid loop cooling with phase change is one of the most promising solutions. A closed-loop silicon microchannel two-phase cooler with an electroosmotic pump has been proposed at Stanford University. This dissertation focuses on the heat transfer and phase change phenomena in sub-150 μm diameter microchannels. Single silicon channels formed on a freestanding beam with integrated heaters and thermometers have been designed and fabricated. These instrumented microchannels represent the first opportunity to carry out detailed, quantitative experiments on the boiling regimes in sub-150 μm diameter microchannels with the capability for simultaneous optical observation, thermal measurement, and pressure transient measurement. Wall temperature measurements and phase change visualizations show that the overall behavior of the two-phase flow in silicon microchannels does not apparently depart from traditional theories in either heat transfer or nucleation mechanisms. On the basis of experimental results and theoretical modeling, general design rules for two-phase microchannel heat sinks are proposed, with an example of a 200 W microchannel heat sink for future high-power IC chips.
机译:当前,人们对集成电路冷却的新技术非常感兴趣。这种兴趣是由IC功率密度的快速增长以及面向民用和军用市场的高密度电子封装的趋势推动的。根据摩尔定律,英特尔奔腾处理器上的晶体管数量从1997年(奔腾II)的7.5×10 6 增加到2000年(奔腾II)的42×10 6 4)。因此,必须精心设计散热管理,以确保这些高速,高功率芯片正常工作。传统上,强制对流用于通过大型散热器和风扇模块散热。当前,具有2 GHz核心频率的Pentium 4处理器具有75 W的功率耗散率或大约45 W / cm 2 热通量,高速风扇产生的噪声已接近极限。可接受的人类操作水平。然而,到2005年,当必须用新的冷却技术代替空气冷却时,单个高性能芯片的功耗水平有望超过100 W / cm 2 。在替代冷却方法中,具有相变的泵送液体回路冷却是最有前途的解决方案之一。斯坦福大学已经提出了一种带电渗泵的闭环硅微通道两相冷却器。本文主要研究直径小于150μm的微通道的传热和相变现象。已经设计和制造了在带有集成加热器和温度计的独立式梁上形成的单硅通道。这些仪器化的微通道代表了首次机会对直径小于150μm的微通道中的沸腾状态进行详细的定量实验,并具有同时光学观察,热测量和压力瞬变测量的功能。壁温测量和相变可视化显示,硅微通道中两相流的总体行为在传热或成核机理上均未明显偏离传统理论。根据实验结果和理论模型,提出了两相微通道散热器的一般设计规则,并举例说明了用于未来大功率IC芯片的200 W微通道散热器。

著录项

  • 作者

    Zhang, Lian.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 168 p.
  • 总页数 168
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号