首页> 外文学位 >Time-domain simulation of large-amplitude ship motions including capsizing.
【24h】

Time-domain simulation of large-amplitude ship motions including capsizing.

机译:大幅度舰船运动的时域仿真,包括倾覆。

获取原文
获取原文并翻译 | 示例

摘要

A Reynolds-Averaged Navier-Stokes (RANS) numerical method has been employed in conjunction with a chimera domain decomposition approach for time-domain simulation of large-amplitude ship motions including capsizing. The unsteady BANS equations are formulated in an earth-fixed reference frame and transformed into general curvilinear, moving coordinate systems. This generalized method can be used to evaluate two- and three-dimensional, laminar and turbulent, nonlinear free surface flows including relative motions among different components of a system.; Equations for ship motion are incorporated into the chimera BANS program to handle coupled ship motion and fluid flow problems. Forces and overturning moments due to current and waves are obtained by directly integrating hydrodynamic forces over all elements on the hull. Gravitational and hydrostatic forces are also accounted for in the motion equations. The grids for both the ship and ambient water are adjusted every time step to account for the ship and current/wave interactions.; In this method, a new domain decomposition technique is employed to handle the free surface problem involving large-amplitude ship roll motions. A grid generation module for free surface and ship roll motion is incorporated in the chimera BANS program. Special treatment is introduced for free surface/ship hull intersections. In this new approach, the ship grid blocks are allowed to move as rigid bodies in simple translational and rotational motions while the free surface grid blocks handle the instantaneous hull and free surface boundary conditions. This treatment allows the ship to undergo large-amplitude roll motions and capsizing without excessive grid distortions.; To demonstrate the feasibility of the method, it is employed to simulate the ship/fender interactions of a full-scale ship in berthing operation. Comparisons are made between the simulation results and the experimental data to provide a thorough validation of the present method. The method accurately predicts the flow induced by the berthing ship as well as the fender force resulted from the berthing operation. A parametric study is then performed for two full-scale naval vessels to evaluate the influence of ship geometry, approach speed, underkeel clearance, quay wall clearance distance, fender stiffness and other design parameters on the maximum fender deflection and impact loads.; In addition, the present study addresses some of the hydrodynamic issues relevant to the operation of a modular, submersible pontoon system (sea cache) in littoral water. Hydrodynamic forces on large pontoon structures while afloat or fully/partially submerged are investigated. Calculations are also performed for a fixed rectangular barge in beam sea conditions to provide a critical assessment on the capability of the present method for time-domain simulation of viscous, nonlinear free surface waves. The computed wave elevations, velocity vectors and vorticity contours are compared with the corresponding experimental data obtained from the Particle Image Velocimetry (PIV) measurements to illustrate the accuracy of the present simulation results. Finally, the method is generalized for time-domain simulation of the capsizing process of a two-dimensional barge in regular waves.
机译:雷诺平均Navier-Stokes(RANS)数值方法已与嵌合域分解方法结合使用,用于时域模拟包括倾覆的大幅度船舶运动。非稳态BANS方程在固定在地球上的参考系中制定,并转化为一般的曲线移动坐标系。这种通用方法可用于评估二维和三维,层流和湍流,非线性自由表面流,包括系统不同组件之间的相对运动。船舶运动方程式已合并到chimera BANS程序中,以处理船舶运动和流体流动的耦合问题。通过将水动力直接集成到船体上的所有元件上,就可以得到由于水流和波浪引起的力和倾覆力矩。重力和静水力也在运动方程中说明。船舶和周围水域的网格每个时间步都要进行调整,以考虑船舶和水流相互作用。在这种方法中,采用了一种新的域分解技术来处理涉及大幅度船侧倾运动的自由表面问题。 chimera BANS程序中包含用于自由表面和船侧倾运动的网格生成模块。对于自由水面/船体交点引入了特殊处理。在这种新方法中,允许船舶网格块以刚体的形式进行简单的平移和旋转运动,而自由表面网格块则处理瞬时船体和自由表面边界条件。这种处理使船舶能够进行大幅度的横摇运动和倾覆,而不会出现过度的网格变形。为了证明该方法的可行性,将其用于模拟全尺寸船舶在靠泊操作中的船舶/护舷相互作用。在仿真结果和实验数据之间进行比较,以提供对本方法的全面验证。该方法准确地预测了靠泊船引起的流量以及靠泊操作产生的护舷力。然后对两艘全尺寸海军舰船进行参数研究,以评估船舶几何形状,进近速度,龙骨间隙,码头壁间隙距离,护舷刚度和其他设计参数对最大护舷挠度和冲击载荷的影响。此外,本研究解决了与沿海水中模块化潜水式浮筒系统(海上缓存)的运行有关的一些水动力问题。研究了大型浮船结构在漂浮或完全/部分淹没时的流体动力。还对束海条件下的固定矩形驳船进行了计算,以对本方法进行时域模拟粘性非线性自由表面波的能力提供关键评估。将计算出的波高,速度矢量和涡度等高线与从粒子图像测速(PIV)测量获得的相应实验数据进行比较,以说明本模拟结果的准确性。最终,该方法被推广用于规则波中二维驳船倾覆过程的时域仿真。

著录项

  • 作者

    Liu, Tuanjie.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 p.1968
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号