首页> 外文学位 >Nonlinear FEA rotating tire modeling for transient response simulations.
【24h】

Nonlinear FEA rotating tire modeling for transient response simulations.

机译:用于瞬态响应仿真的非线性FEA旋转轮胎建模。

获取原文
获取原文并翻译 | 示例

摘要

Of critical importance to the analysis, simulation, and design of safer and more advanced tires will be the establishment of a precise model covering the whole tire structure correctly and in as much detail as possible. Further, because of the limitations of traditional testing facilities, some actual tire rotating tests under severe operating conditions are not always achievable; this is probably the best reason why accurate tire models and simulation algorithms are so needed in today's industries. Therefore the ultimate goal of this research is to build a nonlinear FEA tire model and a virtual tire/drum rotating test machine to simulate these severe operating conditions, which has never been accomplished before.; The four major steps of this research are to: (1) Conduct literature survey about tire models and tire transient responses analyses. (2) Create an FEA tire model and a virtual tire/drum rotating test machine. In order to more accurately model real-world conditions, and in contrast to previous related research whose tire models were composed of only one element type, the FEA tire model developed in this research adopted four different types of elements (solid, membrane, shell, and beam) incorporating over 18,000 nodes and 24 different material definitions, to describe the whole tire's construction in extreme detail. Full FEA tire/drum models and the virtual tire rotating test machine were built. The tire thus modeled will then be used to detect in-plane free vibration modes transmissibility and predict standing waves phenomena of a rotating tire under various inflation pressures, loading conditions and obstacle effects. (3) Develop tire transient dynamic responses simulations. The tire in-plane free vibration modes transmissibility was successfully detected using the virtual tire/drum rotating test machine created with PAM-SHOCK. The results of the simulations showed excellent agreement, quantitatively and qualitatively, with previous research. The standing waves phenomenon was also successfully simulated, predicted, and visualized for the first time. The simulations bypassed the practical difficulties of measuring actual tires, and are superior to the oversimplified analytical derivations. (4) Verify simulation-strategy and tire-model parameters. Six important simulation-strategy and tire-model parameters used in this research were tested, verified, and shown to be in excellent agreement with the experimental results from this research, the previous empirical data, and theoretical/analytical derivations of other investigators. (Abstract shortened by UMI.)
机译:对于更安全,更先进的轮胎的分析,仿真和设计,至关重要的是建立一个精确的模型,该模型应正确且尽可能详细地覆盖整个轮胎结构。此外,由于传统测试设备的局限性,在苛刻的操作条件下某些实际轮胎旋转测试并非总是可以实现的;这可能是当今行业中如此需要精确轮胎模型和仿真算法的最佳原因。因此,这项研究的最终目标是建立一个非线性的FEA轮胎模型和一个虚拟的轮胎/鼓轮旋转试验机来模拟这些严酷的工作条件,这是以前从未实现的。这项研究的四个主要步骤是:(1)进行有关轮胎模型和轮胎瞬态响应分析的文献调查。 (2)创建FEA轮胎模型和虚拟轮胎/轮胎鼓旋转测试机。为了更准确地模拟现实情况,与之前的相关研究(其轮胎模型仅由一种元素类型组成)相比,本研究开发的FEA轮胎模型采用了四种不同类型的元素(固体,膜,壳,和梁)结合了18,000多个节点和24种不同的材料定义,以极其详细地描述整个轮胎的结构。建立了完整的FEA轮胎/鼓模型和虚拟轮胎旋转测试机。如此建模的轮胎随后将用于检测面内自由振动模式的可传递性,并预测在各种充气压力,负载条件和障碍物作用下旋转轮胎的驻波现象。 (3)开发轮胎瞬态动态响应仿真。使用由PAM-SHOCK创建的虚拟轮胎/滚筒旋转测试机成功检测到轮胎平面内自由振动模式的可传递性。仿真结果与先前的研究在数量和质量上都显示出极好的一致性。驻波现象也首次成功地进行了模拟,预测和可视化。该模拟绕过了测量实际轮胎的实际困难,并且优于过分简化的分析推导。 (4)验证模拟策略和轮胎模型参数。测试,验证并验证了本研究中使用的六个重要的仿真策略和轮胎模型参数,这些参数与本研究的实验结果,先前的经验数据以及其他研究者的理论/分析得出的结论非常一致。 (摘要由UMI缩短。)

著录项

  • 作者

    Chang, Yin-ping (Daniel).;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Automotive.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 p.2471
  • 总页数 229
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术及设备;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号