首页> 外文学位 >Integral equations applied to electromagnetic scattering in the resonance region
【24h】

Integral equations applied to electromagnetic scattering in the resonance region

机译:应用于共振区域电磁散射的积分方程

获取原文
获取原文并翻译 | 示例

摘要

In the application of an integral method to the problem of electromagnetic scattering by three-dimensional objects, the electromagnetic problem is formulated in terms of an electric field integral equation for conducting bodies and a combined field integral equation for dielectric or composite objects. The electric and magnetic fields are related to the unknown surface currents by the Green's functions for the scalar and vector potentials. Triangular patches are used to model the scatterer's surface and the basis functions proposed by Rao, Wilton and Glisson, represent the surface current on the scatterer's surface. The application of the method of moments for the solution of the integral equations results in double surface integrals, which are computationally very expensive. Rao, Wilton and Glisson avoided the computation of a double surface integral by approximating the surface integral over the observation triangle by evaluating the integral at the centre of each observation point using a one point Gaussian quadrature scheme. This approach has also been adopted by other workers as it is relatively straightforward to implement since it only requires the field evaluation over the source triangle. In addition, the edge lengths of the triangle patches should be of the order of one-tenth of a wavelength if good results are to be obtained. This simplifies the computational task and it was believed that it decreases the computation time. For electrically large objects, many patches are needed and the order of the system matrices derived from the discretisation of the integral equations becomes large. This thesis investigates whether the approximation used to compute the impedance terms in the reported schemes lead to a computationally efficient scheme. In this thesis, a comparison is made between the use of the EFIE and the CFIE with the full double surface integrals and the original EFIE and the CFIE schemes with the associated approximation. The integrals over the observation and source triangles are both evaluated. The equations of the discretised integral equations for conducting, dielectric and composite objects are derived to enable the impedance terms to be computed efficiently. A method is described of how to minimise the computing time for the evaluation of the double surface integrals and a criterion is presented for obtaining a good compromise between accuracy and total computing time. The proposed formulation has been developed for the EFIE, for scattering by perfect electric conductors only; for the CFIE, for both dielectric/magnetic materials only and also the CFIE for mixed perfect electric conductors and dielectric materials. The scheme has been used to calculate the radar cross- section of conducting, dielectric and mixed objects and the results compared with those based on the RWG formulation and from the literature. The basis of comparison with the RWG formulation is based on accuracy, total computation time and computer memory required. The proposed formulation's results for conducting objects compare well with results from the literature and clearly demonstrate significant computational advantage over the original RWG formulation. For dielectric objects, the proposed formulation shows only some computational advantage over the RWG formulation whereas there is a no Improvement with the mixed objects.
机译:在将积分方法应用于三维物体的电磁散射问题时,电磁问题是根据导体的电场积分方程和电介质或复合物体的组合场积分方程来表示的。电场和磁场通过标量和矢量电势的格林函数与未知的表面电流相关。三角形补丁用于对散射体的表面进行建模,Rao,Wilton和Glisson提出的基本函数代表散射体表面上的表面电流。应用矩量法求解积分方程会产生双表面积分,这在计算上非常昂贵。 Rao,Wilton和Glisson通过使用单点高斯正交方案评估每个观察点中心的积分来近似观察三角形上的表面积分,从而避免了双表面积分的计算。该方法也已被其他工作人员采用,因为它实施起来相对简单,因为它只需要对源三角形进行现场评估。另外,如果要获得良好的结果,三角形贴片的边缘长度应为波长的十分之一。这简化了计算任务,并且据信可以减少计算时间。对于大的电气物体,需要许多补丁,并且从积分方程离散化而来的系统矩阵的阶数变大。本文研究了在报告的方案中用于计算阻抗项的近似值是否导致计算效率高的方案。本文对具有全双曲面积分的EFIE和CFIE与原始的EFIE和CFIE方案以及相关的近似方法进行了比较。观察三角形和源三角形上的积分均被评估。导出了用于导体,电介质和复合物体的离散积分方程的方程,以使阻抗项能够得到有效计算。描述了一种方法,该方法可最大程度地减少用于评估双曲面积分的计算时间,并提出了一种用于在精度和总计算时间之间取得良好折衷的标准。拟议的配方是为EFIE开发的,仅用于通过完美的电导体进行散射;对于CFIE,不仅适用于介电/磁性材料,还适用于混合的完美电导体和介电材料的CFIE。该方案已用于计算导体,电介质和混合物体的雷达横截面,并将结果与​​基于RWG公式和文献的结果进行了比较。与RWG公式进行比较的基础是精度,总计算时间和所需的计算机内存。所提出的用于导电物体的配方结果与文献中的结果很好地比较,并且清楚地证明了与原始RWG配方相比具有显着的计算优势。对于介电物体,所提出的公式仅比RWG公式显示出一些计算优势,而混合物体则没有任何改进。

著录项

  • 作者

    Takawira, Isaac.;

  • 作者单位

    Swansea University (United Kingdom).;

  • 授予单位 Swansea University (United Kingdom).;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 232 p.
  • 总页数 232
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号