首页> 外文学位 >Coupling heat transfer and fluid flow solvers for multi-disciplinary simulations.
【24h】

Coupling heat transfer and fluid flow solvers for multi-disciplinary simulations.

机译:用于多学科模拟的耦合传热和流体流动求解器。

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this study is to build, test, validate, and implement two heat transfer models, and couple them to an existing fluid flow solver, which can then be used for simulating multi-disciplinary problems. The first model is for heat conduction computation, the other one is a quasi-one-dimensional water cooling channel model for water-cooled jacket structural analysis. The first model employs the integral, conservative form of the thermal energy equation, which is discretized by means of a finite-volume numerical scheme. A special algorithm is developed at the interface between the solid and fluid regions, in order to keep the heat flux consistent. The thermal properties of the solid region materials can be temperature dependent, and different materials can be used in different parts of the domains, thanks to a multi-block gridding strategy. The cooling channel flow model is developed by using quasi-one-dimensional conservation laws of mass, momentum, and energy, taking into account the effects of heat transfer and friction. It is possible to have phase changes in the channel, and a mixture model is applied, which allows two phases to be present, as long as they move at the same bulk velocity and vapor quality does not exceed relatively small values. The coupling process of both models (with the fluid solver and with each other) is handled within the Loci system, and is detailed in this study. A hot-air nozzle wall problem is simulated, and the computed results are validated with available experimental data. Finally, a more complex case involving the water-cooled nozzle of a RBCC gaseous oxygen/gaseous hydrogen thruster is simulated, which involves all three models, fully coupled. The calculated temperatures in the nozzle wall and at the cooling channel outlet compare favorably with experimental data.
机译:本研究的目的是建立,测试,验证和实施两个传热模型,并将它们耦合到现有的流体流动求解器,然后将其用于模拟多学科问题。第一个模型用于热传导计算,另一个模型用于水冷套结构分析的准一维水冷通道模型。第一个模型采用热能方程的积分,保守形式,该形式通过有限体积数值方案离散化。为了保持热通量一致,在固相和流体区域之间的界面处开发了一种特殊的算法。固体区域材料的热性能可能取决于温度,并且由于采用了多块网格化策略,因此可以在不同区域的区域中使用不同的材料。通过考虑传热和摩擦的影响,通过使用质量,动量和能量的准一维守恒定律建立冷却通道流动模型。通道中可能会发生相变,并且会应用混合模型,只要两个相以相同的整体速度移动且蒸汽质量不超过相对较小的值,就可以存在两个相。两种模型(与流体求解器以及彼此之间)的耦合过程都在Loci系统中处理,并且在本研究中进行了详细介绍。模拟了热风喷嘴壁的问题,并使用可用的实验数据验证了计算结果。最后,模拟了一个更复杂的案例,其中涉及RBCC气态氧气/气态氢推进器的水冷喷嘴,该案例涉及所有三个模型,完全耦合。喷嘴壁和冷却通道出口处的计算温度与实验数据相比具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号