首页> 外文学位 >Force generation by actin comet tails: Physical influence of the moving object and its surroundings.
【24h】

Force generation by actin comet tails: Physical influence of the moving object and its surroundings.

机译:肌动蛋白彗星尾巴产生的力:运动物体及其周围环境的物理影响。

获取原文
获取原文并翻译 | 示例

摘要

Polymerizing actin filaments in comet tails generate force for movement of the bacterial pathogen, Listeria monocytogenes. Coexisting populations of actin filaments in the tail exert pushing forces and retarding forces on the bacterial surface, while hydrodynamic drag forces oppose motion. In order to understand the magnitude, distribution, and balance of these forces we have designed experiments to perturb the surface properties of moving objects on actin-based movement. To investigate the influence of hydrodynamic drag force on bacterial movement, we compared the speeds of moving Listeria monocytogenes in normal infected fibroblasts to those in cells lacking intermediate filaments. Although the diffusion coefficient of bacteria increases two-fold in cells lacking intermediate filaments, the speed of bacteria in both cell types is identical, suggesting that force generated by actin comet tails is insensitive to a two-fold change in cytoplasmic viscosity. To probe the magnitude and distribution of forces by actin comet tails, we developed a model system where lipid vesicles coated with the ActA protein from L. monocytogenes are propelled by comet tails in cytoplasmic extract. Motile vesicles are deformed due to nanoNewton compression forces exerted by the actin comet tail. Net pushing and retarding forces in the comet tail spatially segregate, such that pushing forces predominate along the sides of the vesicle while retarding forces predominate at the rear. ActA is polarized on vesicles, with the highest density of protein coinciding with the maximal retarding force. To examine how force depends on shape and/or the polar expression of ActA, we examined the motility of ActA-coated ellipsoidal beads in cytoplasmic extracts. At steady-state, beads move either parallel or perpendicular to their major axis at identical speeds. During symmetry-breaking, the beads initiate movement parallel to their major axis, suggesting that a compression-based mechanism for force production depends on the regime of actin-based movement. Lipid-coated ellipsoidal beads move parallel to the major axis and a subset of these beads move in tight persistent circles. These data suggest that fluid surfaces aid in localizing pushing and retarding forces and influence force distribution and force balance in the actin-comet tail.
机译:彗尾中聚合的肌动蛋白丝产生作用力,使细菌病原体单核细胞增生性李斯特氏菌运动。尾部肌动蛋白丝的共存群体在细菌表面施加推力和阻滞力,而流体动力阻力则阻止运动。为了了解这些力的大小,分布和平衡,我们设计了实验来扰动基于肌动蛋白的运动中移动物体的表面特性。为了研究流体动力阻力对细菌运动的影响,我们比较了正常感染的成纤维细胞中单核细胞增生李斯特菌的运动速度与缺少中间细丝的细胞的运动速度。尽管细菌的扩散系数在缺少中间细丝的细胞中增加了两倍,但两种细胞中细菌的速度都是相同的,这表明肌动蛋白彗星尾巴产生的力对细胞质粘度的两倍变化不敏感。为了探测肌动蛋白彗星尾巴的力的大小和分布,我们开发了一个模型系统,其中由来自单核细胞增生李斯特菌的ActA蛋白包被的脂质囊泡由细胞质提取物中的彗星尾巴推动。运动的囊泡因肌动蛋白彗星尾部施加的纳米牛顿压缩力而变形。彗尾中的净推力和阻滞力在空间上是隔离的,这样推力沿囊泡的侧面占主导,而阻滞力则在后部占优势。 ActA在囊泡上极化,具有最高的蛋白质密度和最大的阻滞力。为了检查力如何取决于ActA的形状和/或极性表达,我们检查了在细胞质提取物中ActA包被的椭球的运动性。在稳态下,磁珠以相同的速度平行或垂直于主轴移动。在对称破坏过程中,珠子开始平行于其主轴线运动,这表明基于压缩的力产生机制取决于基于肌动蛋白的运动机制。脂质包裹的椭球珠平行于主轴移动,并且这些珠子的一个子集以紧密的持久圆运动。这些数据表明,流体表面有助于局部化推力和阻滞力,并影响肌动蛋白彗尾中的力分布和力平衡。

著录项

  • 作者

    Giardini, Paula A.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Biophysics General.; Biology Cell.; Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物物理学;细胞生物学;微生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号