首页> 外文学位 >Molecular engineering and nanostructuring of polymer networks for high performance gas separation membranes.
【24h】

Molecular engineering and nanostructuring of polymer networks for high performance gas separation membranes.

机译:用于高性能气体分离膜的聚合物网络的分子工程和纳米结构。

获取原文
获取原文并翻译 | 示例

摘要

The architecturing and characterization of polymer-based materials at a molecular scale are of great importance in the development of novel rigid polymeric molecular sieves for high performance gas separation membranes. The new rapidly growing field of nanoscience technologies and material nanostructuring offers novel ways for creating nanoengineered material combinations. Intermolecular and supramolecular interactions among different molecules and clusters play an important role in the microscopic behavior of molecular architectures and molecular self-assembly. In this work, the coordination shell number of polyetherimide (PEI) membranes was determined from experimental X-ray diffraction data and found to be a key link between microscopic pair intermolecular interactions and macroscopic scale interactions. This link enabled us to determine the intermolecular force parameters required to understand material structuring at a molecular scale. These physical parameters are required in all models used in the determination of the micropore size distributions from gas adsorption isotherms.; Computational chemistry and physicochemical principles were useful to illustrate molecular architecturing and coordinating to form intermediate stable molecular complexes during membrane fabrication. These coordination complexes acted as pore forming templates that could be disrupted and removed after polymer coagulation to open the closed PEI network structure and increase the interconnectivity and accessibility among polymer micropores. Based on nanotechnology concepts, a uniform dispersion of nanoscopically-sized filler particles into a polymer network created novel materials with superior properties and characteristics attributed to the presence of ultra-large interfacial area per unit volume. The adhesive (noncovalent interactions among different molecules) properties of nanoelement surfaces and polymer surfaces were the key for the creation of uniform polymeric molecular sieves. Narrowing the micropore size distribution is also possible when the adhesive energy between nanoparticles and polymer phase exceeds the cohesive energy of the pure polymer. Membranes were prepared using twelve metal-ligand complexes as filler additives that were uniformly dispersed into the PEI polymer solution before membrane casting. Membranes containing cobalt phthalocyanine (CoPc) showed the highest performance for oxygen separation from air. However, the performance was largely decreased upon annealing indicating a low nanostructure stability. (Abstract shortened by UMI.)
机译:在开发用于高性能气体分离膜的新型刚性聚合物分子筛的过程中,以分子级为基础的聚合物基材料的结构化和表征非常重要。迅速发展的纳米科学技术和材料纳米结构新领域为创建纳米工程材料组合提供了新颖的方法。不同分子和簇之间的分子间和超分子相互作用在分子结构和分子自组装的微观行为中起重要作用。在这项工作中,从实验X射线衍射数据确定了聚醚酰亚胺(PEI)膜的配位壳数,这是微观对分子间相互作用与宏观相互作用之间的关键联系。此链接使我们能够确定理解分子规模的材料结构所需的分子间力参数。在根据气体吸附等温线确定微孔尺寸分布的所有模型中,都需要这些物理参数。计算化学和物理化学原理可用于说明分子构造和在膜制造过程中形成中间稳定分子配合物的过程。这些配位配合物充当孔形成模板,在聚合物凝结后可以破坏并除去这些孔,以打开封闭的PEI网络结构并增加聚合物微孔之间的互连性和可及性。基于纳米技术的概念,将纳米尺寸的填料颗粒均匀分散到聚合物网络中,创造了新颖的材料,这些材料具有优异的性能和特性,这归因于每单位体积存在超大的界面面积。纳米元件表面和聚合物表面的粘合性(不同分子之间的非共价相互作用)是形成均一的聚合物分子筛的关键。当纳米颗粒和聚合物相之间的粘合能超过纯聚合物的内聚能时,缩小微孔尺寸分布也是可能的。使用十二种金属-配体配合物作为填料添加剂制备膜,在膜浇铸之前将其均匀分散到PEI聚合物溶液中。含有钴酞菁(CoPc)的膜在从空气中分离氧气方面表现出最高的性能。但是,退火后性能大大降低,表明纳米结构的稳定性低。 (摘要由UMI缩短。)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号