首页> 外文学位 >Modeling and control of laser cladding by powder injection.
【24h】

Modeling and control of laser cladding by powder injection.

机译:粉末注入激光熔覆的建模和控制。

获取原文
获取原文并翻译 | 示例

摘要

This thesis is concerned with automated laser cladding by powder injection. The thesis addresses different aspects of the technology, including system development, modeling, control, and experimental analysis.; A state-of-the-art automated laser cladding apparatus was established, which combined a laser cladding technique and an automated direct feedback control system to monitor and control the clad characteristics in real-time. An optical CCD-based detector along with a pattern recognition algorithm was developed to provide the clad height and angle of the solid/liquid interface in real-time.; In addition to the apparatus development, a mathematical model was developed to address the dependency of the clad geometry on process parameters. For the numerical solution of the model, a finite element technique was used to study the dynamic behavior of laser cladding by powder injection. The model was then used to investigate the correlation between the clad geometry and the process parameters such as laser pulse shaping, process speed, and powder feedrate.; In addition to the numerical analysis, different experimental-based techniques, including stochastic and artificial neural network analyses were used to identify laser a cladding dynamic model. A Hammerstein-Wiener nonlinear model structure was proposed in which a physical knowledge of the process was incorporated in the model structure to relate the process speed to the clad height. A second-order linear model was also identified using the auto regressive exogenous method to reflect the dependency of the clad height to the laser pulse energy. An other experimental-based model was developed in this thesis based upon an Elman recurrent neural network to obtain a comprehensive model to relate the main process parameters to the clad height and the rate of solidification.; Using the identified models, different controllers including PID and fuzzy logic were developed. The performance of the PID controller was examined on the apparatus in the presence of different process disturbances.; An experimental analysis was developed to identify the clad bead quality using two combined parameters: effective energy density and effective powder deposition density. This analysis provided the critical states that should be met in the intelligent controller to obtain good quality clads. The strategy was exploited through application of iron-aluminide coatings on mild steel substrates. Furthermore, the effects of the individual process parameters on the clad characteristics of iron-aluminide on the mild steel were studied.; The developed PID control system over the laser pulse energy was successfully applied to the prototyping of two simple shapes. Results showed that the closed-loop controller significantly improved the geometry of the produced parts compared to an open-loop control system.
机译:本文涉及通过粉末注射的自动激光熔覆。本文论述了该技术的不同方面,包括系统开发,建模,控制和实验分析。建立了一种最先进的自动激光熔覆设备,该设备将激光熔覆技术与自动直接反馈控制系统相结合,可以实时监视和控制熔覆特性。开发了基于光学CCD的检测器以及模式识别算法,以实时提供固/液界面的包层高度和角度。除了设备开发以外,还开发了数学模型来解决包层几何形状对工艺参数的依赖性。对于模型的数值解,使用有限元技术来研究粉末注入激光熔覆的动力学行为。然后使用该模型研究包层几何形状与工艺参数(例如激光脉冲成形,工艺速度和粉末进给速度)之间的相关性。除了数值分析之外,还使用了包括随机和人工神经网络分析在内的各种基于实验的技术来识别激光器的熔覆动力学模型。提出了一种Hammerstein-Wiener非线性模型结构,其中将过程的物理知识纳入模型结构中,以将过程速度与包层高度相关联。还使用自回归外生方法确定了二阶线性模型,以反映包层高度对激光脉冲能量的依赖性。本文基于Elman递归神经网络,开发了另一个基于实验的模型,以获得一个综合模型,该模型将主要工艺参数与包层高度和凝固速率相关联。使用确定的模型,开发了包括PID和模糊逻辑的不同控制器。在存在不同过程干扰的情况下,在设备上检查了PID控制器的性能。利用两个组合参数进行了实验分析,以确定包层焊珠质量:有效能量密度和有效粉末沉积密度。该分析提供了智能控制器中应满足的临界状态,以获得高质量的覆层。通过在低碳钢基材上应用铝化铁涂层来开发该策略。此外,研究了各个工艺参数对铝化铁在低碳钢上的熔覆特性的影响。针对激光脉冲能量开发的PID控制系统已成功应用于两种简单形状的原型制作。结果表明,与开环控制系统相比,闭环控制器显着改善了所生产零件的几何形状。

著录项

  • 作者

    Toyserkani, Ehsan.;

  • 作者单位

    University of Waterloo (Canada).;

  • 授予单位 University of Waterloo (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号