首页> 外文学位 >Damage modeling of vertebral trabecular bone.
【24h】

Damage modeling of vertebral trabecular bone.

机译:椎骨小梁骨的损伤模型。

获取原文
获取原文并翻译 | 示例

摘要

With the underlying goal of understanding the fracture process and risk of fracture with decreased bone mass, there has been a great deal of experimental work directed towards predicting the stiffness and strength of bones, such as vertebrae. There is strong evidence that the mechanical behavior of trabecular bone can be treated at the apparent or continuum-level, and key assumptions of this work are that the accumulation of damage is of primary importance when considering fracture risk and that this behavior can be described using continuum damage mechanics (CDM) models. Experimental study of human vertebral trabecular bone specimens under uniaxial strain-controlled loading demonstrated a high degree of nonlinearity well below the apparent yield point, and at low strains (less than 0.1%) this behavior could be successfully described with multiaxial 3-parameter generalized Maxwell models. Orthotropic damage was determined assuming a strain-energy equivalence approach, and transverse damage values were on the order of 2–3% of the axial damage values. Residual stress response and stiffness degradation observed in experimental work were described using plasticity and damage mechanics models, with parameters determined from experimental data and the literature. These models were combined, along with the viscoelastic model, in a unified constitutive model to describe the damaging viscoelastic-viscoplastic behavior of human vertebral trabecular bone. This unified model was implemented in finite element analyses and applied to the experimental stress response, demonstrating reasonable predictions of the experimental behavior. Finally, the unified constitutive model was used in finite element analyses to investigate the behavior of idealized vertebrae with uniform or focal reductions in bone mass subjected to strain-controlled loading. When differences in apparent compliance were considered, bone mass loss led to increased effect of accumulated damage, especially for focal loss and, at the element level, damage had the greatest effect in elements with lower trabecular volume fraction. Although this work represents an initial effort in the study of trabecular bone mechanics and applied investigation of vertebral behavior, a CDM-based constitutive model was successfully developed and implemented in finite element investigations at the specimen and vertebral body level.
机译:为了了解骨折的过程以及骨量减少而发生骨折的风险,我们进行了许多旨在预测诸如椎骨之类的骨的刚度和强度的实验工作。有充分的证据表明,可以在表观或连续水平上治疗小梁骨的机械行为,这项工作的主要假设是,考虑到骨折风险时,损伤的积累是最重要的,并且可以使用连续损伤力学(CDM)模型。在单轴应变控制载荷下的人体椎骨小梁骨标本的实验研究表明,高度非线性远远低于表观屈服点,而在低应变(小于0.1%)下,这种行为可以用多轴3参数广义Maxwell成功地描述。楷模。正交各向异性损伤是在假定应变能等效方法的情况下确定的,而横向损伤值约为轴向损伤值的2-3%。使用塑性和损伤力学模型描述了在实验工作中观察到的残余应力响应和刚度退化,并根据实验数据和文献确定了参数。这些模型与粘弹性模型结合在一起,构成一个统一的本构模型,以描述人椎骨小梁的破坏性粘弹性-粘塑性行为。该统一模型在有限元分析中实现,并应用于实验应力响应,证明了对实验行为的合理预测。最后,在有限元分析中使用统一的本构模型来研究理想的椎骨的行为,该椎骨在受应变控制的载荷下具有均匀或局部减小的骨质量。当考虑到表观顺应性的差异时,骨量损失导致累积损伤的效果增加,尤其是对于局灶性损失,并且在元素水平上,损伤在骨小梁体积分数较低的元素中具有最大的影响。尽管这项工作代表了对小梁骨力学研究和椎骨行为应用研究的初步努力,但基于CDM的本构模型已成功开发并在标本和椎体水平的有限元研究中得以实施。

著录项

  • 作者

    Bredbenner, Todd Lee.;

  • 作者单位

    Case Western Reserve University.;

  • 授予单位 Case Western Reserve University.;
  • 学科 Engineering Mechanical.; Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 265 p.
  • 总页数 265
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号