首页> 外文学位 >Convection in a thermosyphon: Bifurcation and stability analysis.
【24h】

Convection in a thermosyphon: Bifurcation and stability analysis.

机译:热虹吸管中的对流:分叉和稳定性分析。

获取原文
获取原文并翻译 | 示例

摘要

When a closed vertical loop of fluid is heated from below, the more buoyant hot fluid at the bottom of the loop creates an unstable configuration. In flows such as this one, it is the interplay between the buoyancy, causing the fluid to tend to rise, and the viscosity, causing the fluid to resist flow, that produces the motion of the fluid.; Using the Navier-Stokes equations to model this flow, one arrives at a sequence of bifurcation problems. Historically, researchers have been interested in flow in a thermosyphon both as a bifurcation and an engineering problem. I have derived a model where, in the case of a circular loop, the first Fourier modes exactly decouple from all other Fourier modes, leaving a system of three coupled nonlinear PDEs that completely describe the flow in the thermosyphon. I have characterized the flow through two bifurcations and found a global stability limit, thereby narrowing the location of a third bifurcation. This model has identified periodic solutions for flows of Prandtl number greater than 19, a phenomenon that other, more simplified models do not.; Finding the trivial solution (pure conduction) and linearizing about this solution, one arrives at an eigenvalue problem from which the onset of convection can be found. Using continuation in Grashof number, one can follow this solution branch to the Hopf bifurcation, which changes from sub- to supercritical at Prandtl number ≈19.; I numerically analyze the equations using a spectral method with Chebyshev basis functions for the space dimension and use an implicit-explicit scheme to discretize the time dimension. The results obtained agree with those found analytically, where possible, and those obtained from the full three-dimensional equations with a FEM CFD code (MPSalsa), where available.; Because of the quadratic nonlinearity in this system of equations, it is possible to find the global stability limit, and I have proven it is identical to the first bifurcation point.
机译:当从下方加热封闭的垂直回路时,回路底部的较热的热流体会产生不稳定的构造。在这样的流动中,是导致流体趋于上升的浮力与导致流体抵抗流动的粘度之间的相互作用,从而产生流体的运动。使用Navier-Stokes方程对该流进行建模,得出了一系列分叉问题。从历史上看,研究人员一直对热虹吸管中的分叉和工程问题感兴趣。我推导了一个模型,其中在圆环的情况下,第一个傅里叶模式与所有其他傅里叶模式完全解耦,剩下三个完全耦合的非线性PDE系统,它们完全描述了热虹吸管中的流动。我已经描述了通过两个分支的流量,并发现了整体稳定性极限,从而缩小了第三个分支的位置。该模型确定了Prandtl数大于19的流的周期解,而其他更简化的模型则没有这种现象。找到平凡的解(纯传导)并将其线性化,得出一个特征值问题,从中可以发现对流的开始。使用Grashof数的连续性,可以遵循这一求解分支到达Hopf分支,该分支在Prandtl数≈ 19时从亚临界变为超临界。我使用具有Chebyshev基函数的频谱方法对空间维度进行数值分析,并使用隐式-显式方案离散时间维度。可能的话,获得的结果与通过分析发现的结果一致,如果可能,还可以从具有FEM CFD代码(MPSalsa)的完整三维方程获得的结果一致。由于该方程组中的二次非线性,因此有可能找到整体稳定性极限,而且我已经证明它与第一个分叉点相同。

著录项

  • 作者

    Burroughs, Elizabeth Ann.;

  • 作者单位

    The University of New Mexico.;

  • 授予单位 The University of New Mexico.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 107 p.
  • 总页数 107
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号