首页> 外文学位 >Microstructure and mechanical behavior of thin films and inhomogeneous materials.
【24h】

Microstructure and mechanical behavior of thin films and inhomogeneous materials.

机译:薄膜和不均匀材料的微观结构和力学行为。

获取原文
获取原文并翻译 | 示例

摘要

In this work, processing-structure-property relationships of thin (∼1 μm) films are developed for materials with applications in microelectronics, microelectromechanical systems (MEMS), or magnetic data storage through experimental studies to optimize material properties and improve device performance and reliability.; Variations in film microstructure were achieved through changes in deposition conditions, curing conditions, or through direct changes in material density or composition. Changes in material properties as a result of these (chemical, structural, or physical) modifications are quantified through experimental measurements. Changes in mechanical behavior are quantified through (“nano”-scale) instrumented depth-sensing indentation (DSI) experiments. Changes in material structure and composition are quantified by infrared spectroscopy, ellipsometry, ion beam analysis, scanning electron microscopy, and atomic force microscopy.; Structure-properties relationships are developed for organosilicate-based dielectric materials for microelectronic interconnection arrays with a focus on maximizing film modulus and hardness while minimizing dielectric constant. Relationships between film properties and film structure with changes in deposition conditions are developed for low-pressure chemical vapor deposited silicon nitride films used in MEMS and microelectronics. Specifically, changes in film composition as a result of deposition conditions are related to changes in film stress.; DSI is used to measure the contact responses of silica foam films and flexible magnetic data storage tape for which the microstructural inhomogeneities are comparable to the scale of the indentations. Images of residual indentation impressions are used to determine deformation mechanisms, and contact responses are interpreted by a new method. Differences in the deformation of magnetic data storage tape are quantified using DSI through previously developed deconvolution models and also through the new interpretation method developed for silica foam films.; The adhesion of polymer-metal interfaces relevant to MEMS component fabrication is investigated. Degradation in interfacial adhesion after storage in aqueous environments is quantified using four-point-bending experiments. Interfacial bond hydrolysis is proposed as the mechanism by which interfacial adhesion degrades on exposure to water.
机译:在这项工作中,通过实验研究开发了薄膜(〜1μm)与材料在微电子,微机电系统(MEMS)或磁数据存储中的应用,以优化材料性能并改善器件性能和可靠性,从而建立了薄膜的处理-结构-性能关系。 。;薄膜微观结构的变化是通过改变沉积条件,固化条件或直接改变材料密度或组成来实现的。由于这些(化学,结构或物理)修饰而导致的材料性能变化可通过实验测量进行量化。机械性能的变化通过(“纳米”标度)仪器化的深度感应压痕(DSI)实验进行量化。材料结构和成分的变化通过红外光谱,椭圆偏振法,离子束分析,扫描电子显微镜和原子力显微镜进行定量。开发了用于微电子互连阵列的基于有机硅酸盐的介电材料的结构-特性关系,其重点是最大化膜模量和硬度,同时最小化介电常数。针对在MEMS和微电子领域中使用的低压化学气相沉积氮化硅薄膜,开发了薄膜性质和薄膜结构与沉积条件变化之间的关系。具体地,由于沉积条件导致的膜组成的变化与膜应力的变化有关。 DSI用于测量二氧化硅泡沫膜和柔性磁数据存储带的接触响应,其微观结构不均匀性可与压痕的大小相媲美。残留压痕印象图像用于确定变形机理,并通过新方法解释接触响应。使用DSI通过先前开发的反卷积模型以及通过为二氧化硅泡沫薄膜开发的新解释方法,可以量化磁性数据存储磁带变形的差异。研究了与MEMS组件制造相关的聚合物-金属界面的粘合性。使用四点弯曲实验量化在水性环境中储存后界面粘附力的下降。提出了界面键水解作为接触水时界面粘合力降低的机理。

著录项

  • 作者

    Toivola, Yvete Aubrey.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Materials Science.; Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 p.5165
  • 总页数 373
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号