首页> 外文学位 >Electron transport and ion acoustic dynamics in laser-produced plasmas.
【24h】

Electron transport and ion acoustic dynamics in laser-produced plasmas.

机译:激光产生等离子体中的电子传输和离子声动力学。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis laser-plasma processes are studied at transport and ion time scales. In order to study these processes the particle-in-cell code QN-PIC with one spatial dimension and three dimensions in velocity space was developed. Collisional effects are included by a Monte Carlo procedure, and an electric field solver based on the quasineutrality condition has been implemented. This allows long time scale simulations without having to resolve the electron plasma frequency. Collisional heating of the electrons in the laser electric field is one of the major restrictions on the time step in particle-in-cell codes. We have developed a collisional heating procedure that is based on a Langevin equation. It utilizes a Fokker-Planck equation that describes heating time averaged over the laser frequency. This procedure, in conjunction with the fast field solver and procedures to represent collisions, allows simulation of long time scale in laser-plasma interactions without the need to resolve the short time scales to ensure numerical stability and suppress numerical artifacts. We have studied in detail homogeneously heated plasmas and the effects of electron-electron collisions and collisional heating on the electron distribution function. We have suggested a nonlocal, nonlinear heat transport model based on a earlier self-consistent nonlocal transport theory that is formally restricted to small (linearized) temperature perturbations. Our model extends this model to the case of finite temperature perturbations. The model is tested successfully in simulations of hot spot relaxation of an initial temperature distribution that corresponds to the instantaneous release of heat into a spatially Gaussian temperature profile and Maxwellian velocity distributions of the electrons. In simulations of collisionally heated hot spots we qualitatively describe the effects of non-Maxwellian velocity distributions on the heat flux and the change of the distribution function due to transport in nonheated regions. For the representation of ion dynamics in QN-PIC we have conducted studies of the two stream instability with counterstreaming electrons and ions. Predicted growth rates of ion sound waves are recovered and we find it possible to study anomalous heating and resistivity in 1D ion sound turbulence. In laser plasmas ion sound turbulence due to the return current instability is thought to be one of the factors in the reduction of heat flux from hot spots. (Abstract shortened by UMI.)
机译:本文研究了在传输和离子时间尺度上的激光等离子体过程。为了研究这些过程,开发了在速度空间中具有一维维度和三维维度的单元格代码QN-PIC。碰撞效应包括在蒙特卡洛程序中,并且已经实现了基于准中性条件的电场求解器。这样就可以进行长时间的模拟,而不必解析电子等离子体的频率。激光电场中电子的碰撞加热是细胞内粒子编码中时间步长的主要限制之一。我们已经开发了基于Langevin方程的碰撞加热程序。它利用了Fokker-Planck方程,该方程描述了整个激光频率上的平均加热时间。此过程与快速场求解器和表示碰撞的过程相结合,可以模拟激光-等离子体相互作用中的长时标,而无需解析短时标以确保数值稳定性和抑制数值伪影。我们已经详细研究了均匀加热的等离子体以及电子-电子碰撞和碰撞加热对电子分布函数的影响。我们已经提出了一种基于较早的自洽非局部传热理论的非局部非线性传热模型,该理论被正式限制在较小的(线性化)温度扰动中。我们的模型将此模型扩展到有限温度扰动的情况。该模型已在初始温度分布的热点松弛模拟中成功测试,初始温度分布对应于热量瞬时释放到空间高斯温度分布和电子的麦克斯韦速度分布中。在碰撞加热热点的模拟中,我们定性地描述了非麦克斯韦速度分布对热通量的影响以及由于在非加热区域中的传输而引起的分布函数的变化。为了在QN-PIC中表示离子动力学,我们对带有逆流电子和离子的两股流不稳定性进行了研究。恢复了预测的离子声波增长率,我们发现可以研究一维离子声湍流中的异常加热和电阻率。在激光等离子体中,归因于电流不稳定性的离子声湍流被认为是减少热点热通量的因素之一。 (摘要由UMI缩短。)

著录项

  • 作者

    Detering, Frank.;

  • 作者单位

    The University of Saskatchewan (Canada).;

  • 授予单位 The University of Saskatchewan (Canada).;
  • 学科 Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 p.3344
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 等离子体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号