首页> 外文学位 >A variational technique for spacecraft trajectory planning.
【24h】

A variational technique for spacecraft trajectory planning.

机译:航天器轨迹规划的一种变型技术。

获取原文
获取原文并翻译 | 示例

摘要

A successful autonomous spacecraft must be able to navigate “intelligently”. Intelligent navigation entails finding and following collision-free paths through space which can be traversed in a reasonable time and which use a reasonable amount of fuel. Several spacecraft have been recently proposed for which intelligent navigation abilities are either desirable or necessary. Among these are NASA's AERCam, PSA, and ISS Inspector, ESA's Automated Transfer Vehicle (ATV), and DARPA's Orbital Express. These mission scenarios present challenging guidance problems, as the vehicles may in general start in different orbits from their targets. Trajectory planners for these vehicles must therefore combine “long range” orbital maneuvering, with its attendant nonlinear dynamics and fuel use constraints, and “short range” proximity operations where collision avoidance is paramount.; We describe a spacecraft trajectory planning algorithm based on the calculus of variations which can solve 6-DOF spacecraft docking and proximity operations problems. The design of a cost functional which trades off fuel use, obstacle clearance distance, and arrival time is discussed. The nonlinear orbital dynamic equations are treated as dynamic constraints. The Euler-Lagrange equations for this functional are derived, as are the Pontryagin criteria for the optimal control input given realistic saturating on-off thrusters. The collocation method is chosen to solve the attendant boundary-value problem, and a number of features added to further improve the algorithm's robustness. The manipulation of the Euler-Lagrange equations and the transversality condition into a form suitable for use with collocation methods is also discussed.; The algorithm is shown to be capable of solving “traditional” free-space path planning problems with complex-shaped, moving obstacles. Trajectories are also shown for a variety of orbital maneuvers, culminating in an end-to-end docking maneuver with a tumbling satellite. The computation effort needed to solve these problems is discussed, as are the tradeoffs between fuel use, obstacle clearance distance, and arrival time.
机译:成功的自主航天器必须能够“智能”导航。智能导航需要在空间中找到并遵循无碰撞路径,这些路径可以在合理的时间内通过并使用合理的燃料量。最近已经提出了几种航天器,对于这些航天器,智能导航能力是所希望的或必需的。其中包括NASA的AERCam,PSA和ISS Inspector,ESA的自动转运车(ATV)和DARPA的Orbital Express。这些任务场景提出了具有挑战性的制导问题,因为这些车辆通常可能会从其目标出发而进入不同的轨道。因此,这些车辆的轨迹规划者必须将“远距离”轨道机动,伴随的非线性动力学和燃料使用限制以及“避免碰撞”至关重要的“近距离”近距离飞行结合起来。我们描述了一种基于变化演算的航天器轨迹规划算法,可以解决6自由度航天器对接和接近操作问题。讨论了权衡燃料使用,障碍物清除距离和到达时间的成本函数的设计。非线性轨道动力学方程被视为动力学约束。给定实际的饱和开-关推进器,就可以得出该功能的Euler-Lagrange方程,以及用于最佳控制输入的Pontryagin标准。选择搭配方法以解决伴随的边值问题,并添加了许多功能以进一步提高算法的鲁棒性。还讨论了将Euler-Lagrange方程和横向条件转换为适合搭配方法使用的形式的方法。该算法显示出能够解决带有复杂形状的移动障碍物的“传统”自由空间路径规划问题。还显示了各种轨道机动的轨迹,最终是与翻滚卫星进行端对端对接机动。讨论了解决这些问题所需的计算工作量,以及燃料使用,障碍物清除距离和到达时间之间的权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号