首页> 外文学位 >Cobalt based magnetic nanocomposites: Fabrication, Fundamentals and Applications.
【24h】

Cobalt based magnetic nanocomposites: Fabrication, Fundamentals and Applications.

机译:钴基磁性纳米复合材料:制造,基本原理和应用。

获取原文
获取原文并翻译 | 示例

摘要

Recently, magnetic nanocomposites have aroused significant interests due to their potential success in fundamental researches as well as in real applications. The research focus on magnetic nanocomposites now lies in developing efficient way for their synthesis, probing their fundamental physics and exploring possible related applications. In this dissertation, we have focused on three important topics in magnetic nanocomposite physics, namely, thermal, electrical and magnetic properties of cobalt based magnetic nanocomposites in three model systems.;First, as-synthesized Aucore-Coshell nanoparticles are thermally unstable. In an ex-situ annealing experiment, it was observed that the core-shells slowly transformed to stable peanuts structures via several intermediate states. The series of morphological transformations have been interpreted in term of a series of energy minimizations including the grain boundaries, Co/Au interface and strain.;Second, chemically prepared cobalt/poly (3-hexylthiophene, 2, 5-diyl) (P3HT) hybrid thin films are consisted of a crystalline P3HT matrix, interspersed with amorphous P3HT regions containing the cobalt nanoparticles. Temperature dependence of the resistance of these hybrid systems is well-fitted to the fluctuation induced tunneling (FIT) model. Under magnetic field, a magnetoresistance ratio of 3% was observed in 17 vol.%Co hybrid films at 10K. The magnetoresistance is interpreted by spin-dependent tuning between cobalt clusters across the crystalline P3HT.;Third, in cobalt ferrofluids, a second order blocking-unblocking and a first order melting transitions were observed and indicated by a broad peak and a sharp peak in the ZFC curves, respectively. When the blocking and melting transitions were superposed, the strongest intensity of the sharp peak at the melting point of the organic solvent was obtained. This observation is interpreted by strongest Brownian relaxation in the premelting stage Additionally, the first order melting is also a first order magnetic transition. The magnetocaloric effect in cobalt ferrofluid is also studied.;In addition, two mathematical models were also developed. In the first model, ZFC and FC curves of non-interacting and interacting cobalt nanoparticles are simulated by M-spectrum theory. In the second model, the traditional growth model of nanoparticles is revised without assumption of diffusional layer, which is only built upon Fick's law of diffusion and law of mass conservation.
机译:近年来,由于磁性纳米复合材料在基础研究和实际应用中的潜在成功,引起了人们的极大兴趣。目前,对磁性纳米复合材料的研究重点在于开发有效的合成方法,探索其基本物理原理并探索可能的相关应用。本论文重点研究了磁性纳米复合材料物理中的三个重要主题,即三种模型体系中钴基磁性纳米复合材料的热,电和磁性能。首先,合成的Aucore-Coshell纳米粒子是热不稳定的。在异位退火实验中,观察到核壳通过几个中间状态缓慢转变为稳定的花生结构。已通过一系列能量最小化(包括晶界,Co / Au界面和应变)来解释了一系列的形态转变;第二,化学制备的钴/聚(3-己基噻吩,2,5-二基)(P3HT)杂化薄膜由结晶的P3HT基质组成,散布着包含钴纳米颗粒的非晶P3HT区域。这些混合系统电阻的温度依赖性非常适合于波动诱导隧穿(FIT)模型。在磁场下,在10K的体积百分比为17的Co杂化薄膜中观察到的磁阻比为3%。磁阻是通过结晶P3HT上钴簇之间的自旋相关调谐来解释的;第三,在钴铁磁流体中,观察到了二阶阻滞-未阻滞和一阶熔融转变,并由一个宽峰和一个尖峰表示。 ZFC曲线。当封闭和熔化转变重叠时,在有机溶剂的熔点处获得最强的尖峰强度。该观察结果可以通过预熔阶段中最强的布朗弛豫来解释。此外,一阶熔化也是一阶磁跃迁。还研究了钴铁磁流体中的磁热效应。此外,还建立了两个数学模型。在第一个模型中,通过M谱理论模拟了非相互作用和相互作用的钴纳米颗粒的ZFC和FC曲线。在第二个模型中,修改了传统的纳米粒子生长模型,而无需假设扩散层,这仅基于菲克扩散定律和质量守恒定律。

著录项

  • 作者

    Wen, Tianlong.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Nanoscience.;Nanotechnology.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号