首页> 外文学位 >Hydrodynamics of micron-scale particle removal from surfaces.
【24h】

Hydrodynamics of micron-scale particle removal from surfaces.

机译:从表面去除微米级颗粒的流体力学。

获取原文
获取原文并翻译 | 示例

摘要

The goal of this work was to assess the mechanisms of micron-scale particle removal from surfaces using a critical particle Reynolds number (Repc ) approach. The particle Reynolds number (Rep) describes the flow near an adhering particle and is defined as Rep=drVp m where d is the particle diameter, ρ is the fluid density, Vp is the relative velocity between the fluid and the particle at the center of the particle, and μ is the fluid viscosity. In this approach, particle removal occurs when Rep ≥ Repc, where Re pc is a function of the fluid forces, the geometry of the interacting objects, the removal mechanism, and the particle-surface adhesion force, which is a function of system composition, geometry, morphology, and deformation.; The Repc model was validated first using data found in the literature and then experimentally. The literature provided data for the removal of monodisperse glass spheres from a glass surface in laminar channel flow while the experimental work provided data for the removal of polydisperse polystyrene spheres from a quartz surface in laminar channel flow. In both instances, an experimentally validated adhesion model was used to predict an adhesion force distribution which was then used to determine Repc. Results indicated that rolling is the controlling removal mechanism and both studies showed that the predicted (rolling) adhesion profiles were in good agreement with the data when variation in particle size, adhesion force, and point around which rolling occurs was considered.; The Repc model was then used to analyze the removal of asymmetrical alumina particles from polished silicon dioxide and copper during brush scrubbing at operating conditions typical of commercial brush scrubbers. This analysis showed that (1) the time-dependent nature of the flow significantly affects particle removal in this system; (2) particle shape and the fraction of a particle embedded in a surface have a significant effect on particle removal by affecting both the particle-surface adhesion and fluid forces; and (3) brush-particle interaction may increase the percentage of particles removed by reducing the ‘effective’ particle-surface adhesion force and through brush-particle momentum transfer.
机译:这项工作的目的是评估使用临界粒子雷诺数(Re pc )方法从表面去除微米级粒子的机制。粒子雷诺数(Re p )描述了附着粒子附近的流动,并定义为 Re p = d r V p m > 其中d是粒径,ρ是流体密度,V p 是流体与中心颗粒之间的相对速度表示颗粒的粘度,μ是流体粘度。在这种方法中,当Re p ≥Re pc 时,会发生颗粒去除,其中Re pc 是流体力,流体几何形状的函数。相互作用的物体,去除机理以及颗粒表面的附着力,这是系统组成,几何形状,形态和变形的函数。 Re pc 模型首先使用文献中的数据进行验证,然后通过实验进行验证。文献提供了层流通道中从玻璃表面去除单分散玻璃球的数据,而实验工作提供了层流通道中从石英表面去除多分散聚苯乙烯球的数据。在这两种情况下,均使用实验验证的粘附模型来预测粘附力分布,然后使用粘附力分布来确定Re pc 。结果表明,轧制是控制去除的机制,两项研究均表明,当考虑粒径,粘附力和轧制发生点的变化时,预测的(轧制)附着力曲线与数据吻合良好。然后使用Re pc 模型分析在典型的商用刷子洗涤器的操作条件下,在刷子洗涤过程中从抛光的二氧化硅和铜中去除不对称氧化铝颗粒的情况。该分析表明(1)流动的时间依赖性极大地影响了该系统中的颗粒去除; (2)颗粒的形状和嵌入表面的颗粒分数通过影响颗粒表面的附着力和流体力而对颗粒的去除产生重大影响; (3)刷子与颗粒之间的相互作用可能会通过降低“有效”的颗粒表面粘附力以及通过刷子与颗粒之间的动量传递来增加去除颗粒的百分比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号