首页> 外文学位 >A study of meshless and finite element approaches for aeroelastic analysis on interacting surfaces.
【24h】

A study of meshless and finite element approaches for aeroelastic analysis on interacting surfaces.

机译:对相互作用表面上的气动弹性分析的无网格和有限元方法的研究。

获取原文
获取原文并翻译 | 示例

摘要

The ability to handle relative motion of intersecting surfaces remains a difficult yet important problem in the field of computational aeroelasticity. An example of this is simulating the flow over an airfoil with a moving flap or aileron. Traditionally, mesh based methods have handled such problems by solving and re-meshing the domain reiteratively. Although a considerable amount of success has been achieved using these methods, implementing them for problems with a very large number of degrees of freedom is an expensive task even today.;This work focuses on this problem with the objective of developing a numerical framework that will provide an alternative to re-meshing, and mitigate numerical costs traditionally involved in aeroelastic type of problems. To this end a meshless method is first utilized and adapted for unsteady analysis using fluid Euler equations. Bearing in mind certain advantages of the method, and in light of several shortcomings, a finite element approach is next adopted. The premise of the FEM-based method is contingent on decomposing the computational domain based on certain geometric considerations. The solution method involves creating an interpolation space and blending the finite element solution in a zone of transition by using certain mesh-specific 'influence coefficients'. Several implementation issues, such as the construction of the influence coefficients, the creation of a transition zone, imposition of essential boundary conditions, mesh motion, and time integration are addressed and discussed. The method is validated on an airfoil-flap system, with unsteady results for airfoil-pitching and harmonic flap-oscillations compared to those from Theodorsen's thin airfoil theory.
机译:处理相交表面的相对运动的能力在计算空气弹性领域中仍然是困难而重要的问题。这样的一个示例是使用活动襟翼或副翼来模拟机翼上的流动。传统上,基于网格的方法通过反复解决和重新划分域来处理此类问题。尽管使用这些方法已取得了相当大的成功,但即使在今天,要解决具有很大自由度的问题仍然是一项昂贵的任务。;这项工作着眼于这个问题,目的是开发一个数值框架,该框架将提供重新网格划分的替代方法,并减轻传统上涉及气动弹性类型问题的数值成本。为此,首先使用无网格方法并将其用于使用流体欧拉方程进行非稳态分析。考虑到该方法的某些优点,并且鉴于一些缺点,接下来采用有限元方法。基于FEM的方法的前提是要基于某些几何考虑因素分解计算域。解决方法包括创建一个插值空间,并通过使用某些特定于网格的“影响系数”在过渡区域中混合有限元解决方案。解决并讨论了几个实现问题,例如影响系数的构造,过渡区域的创建,基本边界条件的施加,网格运动和时间积分。该方法在翼型襟翼系统上得到了验证,与Theodorsen的薄型翼型理论相比,该方法对翼型俯仰和谐波襟翼振动具有不稳定的结果。

著录项

  • 作者

    Kaila, Vivek.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号