首页> 外文学位 >Efficient methods for large multivariate time series connectivity analysis.
【24h】

Efficient methods for large multivariate time series connectivity analysis.

机译:大型多元时间序列连通性分析的有效方法。

获取原文
获取原文并翻译 | 示例

摘要

Progressive advances in electroencephalography (EEG) and magnetoencephalography (MEG) acquisition hardware design allow for collection of signals at ever increasing temporal and spatial resolutions. At the same time, computationally complex analysis methods are also becoming increasingly popular. Therefore, such implementations of these methods that take advantage of the newest hardware and the latest developments in computational algorithms is of paramount importance to analyze EEG and MEG signals efficiently.;Moreover, we conduct exploratory analysis on EEG and MEG time series arising from various cognitive experiments aimed at creating representative profiles of brain activation for different populations. Using coherence as a measure of connectivity and investigating the power content of signals, we create brain activation profiles of various populations involved in the tasks, and identify those regions in the brain whose activation is significantly different under varying experimental protocols. Finally, we apply principal component analysis to the concentration of dopamine D1 and D2 receptors in the brain to study how localization of these neuroreceptors changes before and after working memory training and find that our data-driven approach corroborates with a study based on a priori regions of interest.;In this dissertation, we present computational methods and optimizations that enable computation of large multivariate models for EEG/MEG analysis. In particular, we focus on the implementation of the Granger causality algorithm on computer clusters with several nodes and multiple cores per node. We explore the applicability of both shared and distributed memory programming paradigms to enable the analysis of arbitrarily large data sets. Our solutions are validated using a variety of clinical data sets including EEG data from subjects suffering from traumatic brain injury and MEG data from normal subjects participating in a study of affect as well as MEG data from autistic subjects. Computation of brain activation profiles using Granger causality as a measure of connectivity among the various brain regions has resulted in reduction of computation time by up to 98.5%. In addition to Granger causality, we parallelize an iterative artifact removal algorithm based on independent component analysis that we have developed in-house. This has resulted in a speedup of an order of magnitude and it can now provide quasi real time performance with hundreds of recording channels and a sampling rate of more than 128 Hz.
机译:脑电图(EEG)和磁脑电图(MEG)采集硬件设计的进步使得可以以越来越高的时间和空间分辨率采集信号。同时,计算复杂的分析方法也越来越流行。因此,利用最新硬件和计算算法的最新进展来实现这些方法的方法对于有效地分析EEG和MEG信号至关重要。此外,我们对由各种认知引起的EEG和MEG时间序列进行探索性分析。实验旨在为不同人群创建具有代表性的大脑激活特征。使用相干性作为连通性的量度并调查信号的功率含量,我们创建了参与任务的各种人群的大脑激活曲线,并确定了在不同实验方案下大脑中其激活显着不同的那些区域。最后,我们对脑中多巴胺D1和D2受体的浓度进行主成分分析,以研究这些神经受体在工作记忆训练前后的定位如何变化,并发现我们的数据驱动方法与基于先验区域的研究相佐证本文主要介绍计算方法和优化方法,这些方法和优化方法可以计算大型多变量模型用于EEG / MEG分析。特别是,我们着重于在具有多个节点且每个节点具有多个核心的计算机集群上实施Granger因果算法。我们探索共享和分布式内存编程范例的适用性,以使能够分析任意大的数据集。我们的解决方案已使用多种临床数据集进行了验证,这些数据集包括来自遭受脑外伤的受试者的EEG数据,来自参与研究情感的正常受试者的MEG数据以及来自自闭症受试者的MEG数据。使用格兰杰因果关系作为衡量各个大脑区域之间连接性的指标来计算大脑激活曲线,已使计算时间最多减少了98.5%。除了Granger因果关系外,我们还基于内部开发的独立成分分析并行化了迭代伪像去除算法。这导致了一个数量级的加速,并且现在可以通过数百个记录通道和超过128 Hz的采样率提供准实时性能。

著录项

  • 作者

    Patidar, Udit.;

  • 作者单位

    University of Houston.;

  • 授予单位 University of Houston.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 105 p.
  • 总页数 105
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号