首页> 外文学位 >Bringing optical metamaterials to reality.
【24h】

Bringing optical metamaterials to reality.

机译:将光学超材料带入现实。

获取原文
获取原文并翻译 | 示例

摘要

Metamaterials, which are artificially engineered composites, have been shown to exhibit electromagnetic properties not attainable with naturally occurring materials. The use of such materials has been proposed for numerous applications including sub-diffraction limit imaging and electromagnetic cloaking. While these materials were first developed to work at microwave frequencies, scaling them to optical wavelengths has involved both fundamental and engineering challenges. Among these challenges, optical metamaterials tend to absorb a large amount of the incident light and furthermore, achieving devices with such materials has been difficult due to fabrication constraints associated with their nanoscale architectures. The objective of this dissertation is to describe the progress that I have made in overcoming these challenges in achieving low loss optical metamaterials and associated devices.;The first part of the dissertation details the development of the first bulk optical metamaterial with a negative index of refraction. This metamaterial is shown to overcome the problems of previous metamaterials by reducing the amount of light absorbed in the material. The increased thickness of the bulk metamaterial also allows the first direct experimental observation of negative refraction at optical frequencies. Next, I will describe the design and experimental realization of the first electromagnetic cloak operating at optical frequencies. The cloaking device is designed using quasi-conformal mapping which enables the use of an all dielectric, isotropic metamaterial, allowing the cloak to operate over large bandwidth with low absorption losses, overcoming the problems with previous cloaking proposals. This design methodology and metamaterial system is then extended to realize an optical 'Janus' device. The device is designed and experimentally proven to have two different and independent optical functionalities in two separate spatial directions for use in integrated photonics architectures. The last section of the thesis describes several new directions I am pursuing in the field of metamaterials. The first is the experimental realization a photonic black hole. This device functions similar to a gravitational black hole in that it concentrates light into a small spatial area but is realized through a spatial varying index profile. The extension of transformation optics into plasmonic systems is then presented. Experimental work aimed at realizing a gradient index Luneburg lens is presented utilizing modulations of the surface plasmon mode index though height variations in a dielectric. Finally, a new method for achieving large scale, three dimensional, gradient index metamaterials is presented. Such a method could be employed for achieving large scale cloaks or gradient index lenses for use in photovoltaics.;The findings presented here represent some of the first metamaterial inspired devices at optical wavelengths. It is my hope that this work will help to inspire the next generation of metamaterials and devices with ever increasing functionality.
机译:超材料是人工合成的复合材料,已显示出天然材料无法达到的电磁性能。已经提出将这种材料用于许多应用,包括亚衍射极限成像和电磁隐身。虽然这些材料最初是在微波频率下工作的,但是将它们缩放到光学波长却涉及到基本和工程方面的挑战。在这些挑战中,光学超材料倾向于吸收大量的入射光,此外,由于与它们的纳米级体系结构相关的制造限制,使用这种材料来实现器件已经很困难。本文的目的是描述我在克服这些挑战方面所取得的进展,以实现低损耗的光学超材料和相关器件。论文的第一部分详细介绍了第一种具有负折射率的块状光学超材料的开发。 。该超材料显示出通过减少材料中吸收的光量来克服以前的超材料的问题。增加的块状超材料的厚度还允许首次直接实验观察光频率下的负折射。接下来,我将描述在光频率下工作的第一个电磁斗篷的设计和实验实现。伪装设备是使用准保形映射设计的,它允许使用全介电,各向同性的超材料,从而使该伪装能够在大带宽上以较低的吸收损耗工作,从而克服了先前的伪装建议所带来的问题。然后,将这种设计方法和超材料系统进行扩展,以实现光学“ Janus”设备。该设备经过设计和实验证明,可在两个独立的空间方向上具有两个不同且独立的光学功能,可用于集成光子学体系结构。论文的最后一部分描述了我在超材料领域中追求的几个新方向。首先是实验实现光子黑洞。该设备的功能类似于重力黑洞,因为它会将光聚集到一个较小的空间区域中,但是可以通过空间变化的折射率分布来实现。然后介绍了将转换光学系统扩展为等离子体系统的方法。通过电介质中高度的变化,利用表面等离激元模态指数的调制,提出了旨在实现梯度折射率Luneburg透镜的实验工作。最后,提出了一种新的实现大规模三维梯度指数超材料的方法。可以使用这种方法来实现用于光伏的大型隐身衣或渐变折射率镜片。此处呈现的发现代表了一些在光波长下最早受到超材料启发的设备。我希望这项工作将有助于激发功能不断增强的下一代超材料和设备。

著录项

  • 作者

    Valentine, Jason Gage.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Physics Electricity and Magnetism.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号