首页> 外文学位 >The role of the glutathione S transfersases An9 and Bz2 and the multidrug-resistance associated protein ZmMRP1 in anthocyanin sequestration.
【24h】

The role of the glutathione S transfersases An9 and Bz2 and the multidrug-resistance associated protein ZmMRP1 in anthocyanin sequestration.

机译:谷胱甘肽S转移酶An9和Bz2以及多药耐药相关蛋白ZmMRP1在花色素苷螯合中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Plants produce a staggering array of heterocyclic organic molecules and these compounds have a wide range of biological activities. To fulfill their specific function, each of these compounds must not only be synthesized but must also be efficiently transported to the correct location within the cell. While biosynthetic mechanisms are well described, little is known about the movement organic molecules within the cell. Using anthocyanin biosynthesis as a model, I describe a novel system involved in the transport of certain classes of heterocyclic organic molecules from their site of synthesis in the cytoplasm to their site of function; the vacuole.; The glutathione S-transferase (GST) Bronze2 (Bz2) is required for the vacuolar sequestration of anthocyanin in Zea mays. I demonstrate that the Petunia hybrida GST An9 is also required for anthocyanin sequestration, and that it is the GST function of Bz2 and An9 that is required for the correct localization of anthocyanin in both these plants. I also demonstrate that An9 functions as an anthocyanin binding protein, rather than as a catalytic enzyme.; GST function is required for anthocyanin sequestration but is not sufficient to move this molecule from the cytoplasm to the vacuole. I describe the tonoplast localized multidrug-resistance associated protein ZmMRP1 as a transmembrane transporter that is regulated in conjunction with the anthocyanin pathway. ZmMRP1 is identified as the protein required for the proper movement of anthocyanin from the cytoplasm to the vacuole in Z. mays and represents the final cytoplasmic step in anthocyanin biosynthesis.
机译:植物产生惊人的杂环有机分子阵列,这些化合物具有广泛的生物活性。为了实现其特定功能,这些化合物中的每一种不仅必须合成,而且还必须有效地转运到细胞内的正确位置。尽管已经很好地描述了生物合成机制,但对于细胞内有机分子的运动知之甚少。我使用花青素生物合成作为模型,描述了一种新型系统,该系统参与了某些类别的杂环有机分子从其在细胞质中的合成位点到其功能位点的转运。液泡。谷胱甘肽中的花色素苷空泡螯合需要谷胱甘肽S-转移酶(GST)Bronze2(Bz2)。我证明矮牵牛GST An9也是花青素螯合所必需的,并且Bz2和An9的GST功能对于这两种植物中花青素的正确定位是必需的。我还证明了An9作为花青素结合蛋白而不是催化酶。 GST功能是花色苷螯合所必需的,但不足以将该分子从细胞质移至液泡。我描述了液泡膜定位的多药耐药相关蛋白ZmMRP1是一种跨膜转运蛋白,与花青素途径结合调控。 ZmMRP1被鉴定为花青素从玉米质中的细胞质正确迁移到液泡所需的蛋白质,代表了花色苷生物合成中的最后一个细胞质步骤。

著录项

  • 作者

    Goodman, Christopher Dean.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Biology Molecular.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 215 p.
  • 总页数 215
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号