首页> 外文学位 >Underwater target detection using multiple disparate sonar platforms.
【24h】

Underwater target detection using multiple disparate sonar platforms.

机译:使用多个不同的声纳平台进行水下目标检测。

获取原文
获取原文并翻译 | 示例

摘要

The detection of underwater objects from sonar imagery presents a difficult problem due to various factors such as variations in the operating and environmental conditions, presence of spatially varying clutter, and variations in target shapes, compositions, and orientation. Additionally, collecting data from multiple platforms can present more challenging questions such as "how should I collaboratively perform detection to achieve optimal performance?", "how many platforms should be employed?", "when do we reach a point of diminishing return when adding platforms?", or more importantly "when does adding an additional platform not help at all?". To perform multi-platform detection and answer these questions we use the coherent information among all disparate sources of information and perform detection on the premise that the amount of coherent information will be greater in situations where a target is present in a region of interest within an image versus a situation where our observation strictly consists of background clutter.;To exploit the coherent information among the different sources, we recast the standard Neyman-Pearson, Gauss-Gauss detector into the Multi-Channel Coherence Analysis (MCA) framework. The MCA framework allows one to optimally decompose the multi-channel data into a new appropriate coordinate system in order to analyze their linear dependence or coherence in a more meaningful fashion. To do this, new expressions for the log-likelihood ratio and J-divergence are formulated in this multichannel coordinate system. Using the MCA framework, the data of each channel is first whitened individually, hence removing the second-order information from each channel. Then, a set of linear mapping matrices are obtained which maximizes the sum of the cross-correlations among the channels in the mapped domain. To perform detection in the coordinate system provided by MCA, we first of all construct a model suited to this multiple sensor platform problem and subsequently represent observations in their MCA coordinates associated with the H1 hypothesis. Performing detection in the MCA framework results in a log-likelihood ratio that is written in terms of the MCA correlations and mapping vectors as well as a local signal-to-noise ratio matrix. In this coordinate system, the J-divergence, which is a measure of the difference in means of the likelihood ratio, can effectively be represented in terms of the multi-channel correlations and mapping vectors. Using this J-divergence expression, one can get a more clear picture of the amount of discriminatory information available for detection by analyzing the amount of coherent information present among the channels.;New analytical and experimental results are also presented to provide better insight on the effects of adding a new piece of data to the multi-channel Gauss-Gauss detector represented in the MCA framework. To answer questions like those posed in the first paragraph, one must carefully analyze the amount of discriminatory information that is brought to the detection process when adding observations from an additional channel. Rather than attempting to observe the increase (or lack thereof) from the full detection problem it is advantageous to look at the change incrementally. To accomplish this goal, new updating equations for the likelihood ratio are derived that involve linearly estimating the new data from the old (already existing) and updating the likelihood ratio accordingly. In this case, the change in J-divergence can be written in terms of error covariance matrices under each hypothesis. We then derive a change in coordinate system that can be used to perform dimensionality reduction. This especially becomes useful when the data we wish to add exists in high-dimensional space. To demonstrate the usefulness of log-likelihood updating, we conduct two simulation studies. The first simulation corresponds to detecting the presence of dynamical structure in data we have observed and corresponds to a temporal updating scheme. The second is concerned with detecting the presence of a single narrow-band source using multiple linear sensor arrays in which case we consider a platform (or channel) updating scheme.;A comprehensive study is carried out on the MCA-based detector on three data sets acquired from the Naval Surface Warfare Center (NSWC) in Panama City, FL. The first data set consists of one high frequency (HF) and three broadband (BB) side-looking sonar imagery coregistered over the same region on the sea floor captured from an Autonomous Underwater Vehicle (AUV) platform. For this data set we consider three different detection schemes using different combinations of these sonar channels. The next data set consists of one HF and only one BB beamformed sonar imagery again coregistered over the same region on the sea floor. This data set consists of not only target objects but also lobster traps giving us experimental intuition as how the multi-channel correlations change for different object compositions. The use of multiple disparate sonar images, e.g., a high frequency, high resolution sonar with good target definition and a multitude of lower resolution broadband sonar with good clutter suppression ability significantly improves the detection and false alarm rates comparing to situations where only single sonar is utilized. Finally, a data set consisting of synthetically generated images of targets with differing degrees of disparity such as signal-to-noise ratio (SNR), aspect angle, resolution, etc., is used to conduct a thorough sensitivity analysis in order to study the effects of different SNR, target types, and disparateness in aspect angle.
机译:由于各种因素,例如操作和环境条件的变化,空间变化的杂波的存在以及目标形状,成分和方向的变化,从声纳图像中检测水下物体提出了一个难题。此外,从多个平台收集数据可能会提出更多具有挑战性的问题,例如“我应该如何协同执行检测以实现最佳性能?”,“应使用多少个平台?”,“添加时何时达到收益递减点”平台?”或更重要的是“何时添加附加平台根本没有帮助?”。为了执行多平台检测并回答这些问题,我们在所有不同的信息源中使用相干信息,并在以下条件下执行检测:在目标位于目标区域内感兴趣区域中的情况下,相干信息量会更大图像与我们的观察严格由背景杂波组成的情况;为了利用不同来源之间的相干信息,我们将标准Neyman-Pearson,Gauss-Gauss检测器重铸为多通道相干分析(MCA)框架。 MCA框架允许将多通道数据最佳地分解为新的适当坐标系,以便以更有意义的方式分析其线性相关性或相干性。为此,在此多通道坐标系中制定了对数似然比和J散度的新表达式。使用MCA框架,首先将每个通道的数据分别进行白化处理,从而从每个通道中删除二阶信息。然后,获得一组线性映射矩阵,该矩阵将映射域中通道之间的互相关之和最大化。为了在MCA提供的坐标系中执行检测,我们首先构建一个适合于此多传感器平台问题的模型,然后在与H1假设相关的MCA坐标中表示观察结果。在MCA框架中执行检测会产生对数似然比,该对数似然比根据MCA相关性和映射向量以及局部信噪比矩阵来编写。在该坐标系中,可以用多通道相关性和映射矢量有效地表示J散度,它是似然比均值的度量。使用这种J散度表达式,可以通过分析通道之间存在的相干信息量来更清楚地了解可用于检测的歧视性信息量。;还提出了新的分析和实验结果,以提供对这些信息的更好的洞察力将新数据添加到以MCA框架表示的多通道高斯-高斯检测器的效果。为了回答第一段中提出的问题,当从其他渠道添加观察结果时,必须仔细分析带给检测过程的歧视性信息量。与其尝试从完全检测问题中观察到增加(或缺乏增加),不如逐步观察变化。为了实现该目标,导出了似然比的新更新方程,其中涉及从旧的(已经存在的)线性估计新数据并相应地更新似然比。在这种情况下,可以根据每个假设下的误差协方差矩阵来写出J散度的变化。然后,我们得出坐标系的变化,该变化可用于执行降维。当我们希望添加的数据存在于高维空间中时,这尤其有用。为了证明对数可能性更新的有用性,我们进行了两个模拟研究。第一模拟对应于检测我们观察到的数据中动态结构的存在,并且对应于时间更新方案。第二个问题涉及使用多个线性传感器阵列检测单个窄带源的存在,在这种情况下,我们考虑一种平台(或通道)更新方案。;对基于MCA的检测器对三个数据进行了全面研究从巴拿马城海​​军水面作战中心(NSWC)获得的武器,佛罗里达州。第一个数据集包含一个从自主水下航行器(AUV)平台捕获的,在海底同一区域上共配准的一个高频(HF)和三个宽带(BB)侧视声纳图像。对于此数据集,我们考虑使用这些声纳通道的不同组合的三种不同的检测方案。下一个数据集由一个HF和仅一个BB波束形成的声纳图像组成,它们再次在海底的同一区域上共配准。该数据集不仅包含目标对象,还包含龙虾陷阱,这为我们提供了实验直觉,因为不同对象组成的多通道相关性如何变化。与仅使用单个声纳的情况相比,使用多个不同的声纳图像,例如具有良好目标清晰度的高频,高分辨率声纳和具有良好杂波抑制能力的多种低分辨率宽带声纳,可以显着提高检测率和误报率利用。最后,使用由合成生成的具有不同视差度(例如信噪比(SNR),纵横比,分辨率等)的目标图像组成的数据集,进行彻底的灵敏度分析,以便研究不同SNR,目标类型和纵横比差异的影响。

著录项

  • 作者

    Klausner, Nicholas Harold.;

  • 作者单位

    Colorado State University.;

  • 授予单位 Colorado State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 M.S.
  • 年度 2010
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号