首页> 外文学位 >Monodisperse carbon nanomaterials for thin film electronics.
【24h】

Monodisperse carbon nanomaterials for thin film electronics.

机译:用于薄膜电子产品的单分散碳纳米材料。

获取原文
获取原文并翻译 | 示例

摘要

Carbon nanomaterials such as carbon nanotubes and graphene are being explored for a number of applications that exploit their outstanding electronic, optical, mechanical, and chemical properties. These nanomaterials possess characteristic dimensions of approximately 1 nm and have properties that can differ dramatically based on changes in their physical structure that occur on a fraction of this length scale. Consequently, small variations, or polydispersity, in the structure of carbon nanomaterials cause their behavior to be unpredictable and have precluded their widespread use in electronic and optical applications. In this thesis, I employ density gradient ultracentrifugation to address the polydispersity problem for carbon nanotubes and graphene. This technique uses amphiphilic surfactants to establish differences in the buoyant density of carbon nanomaterials as a function of their physical and electronic structure. These minute differences in the buoyant density of the nanomaterials lead to variations in their equilibrium positions inside a density gradient following ultracentrifugation. By employing different surfactant chemistries, carbon nanotubes can be produced that are monodisperse in a number of structural parameters, such as diameter, chiral handedness, electronic type (metallic or semiconducting), and wall number. In addition, graphene with well-defined atomic layer thickness can also be isolated using density differentiation. To demonstrate the utility of these unique materials, I incorporate monodisperse carbon nanomaterials into thin film networks that exploit their enhanced electronic and optical properties. Transparent conductors consisting of highly conductive metallic carbon nanotubes, long double-walled carbon nanotubes, or density-refined graphene exhibit lower sheet resistances at higher optical transmittance levels than polydisperse carbon nanomaterial films. Moreover, thin film field-effect transistors composed of semiconducting carbon nanotube networks are shown to offer performance parameters that exceed those of conventional organic electronic materials. These results demonstrate that monodisperse carbon nanomaterials are promising candidates for future applications in thin film electronics.
机译:诸如碳纳米管和石墨烯之类的碳纳米材料正被用于许多利用其出色的电子,光学,机械和化学特性的应用中。这些纳米材料具有约1 nm的特征尺寸,其特性可能会基于其物理结构的变化而发生显着变化,而这种物理结构的变化仅占该长度尺度的一小部分。因此,碳纳米材料的结构中的小变化或多分散性导致其行为不可预测,并阻止了其在电子和光学应用中的广泛使用。本文采用密度梯度超离心技术解决了碳纳米管和石墨烯的多分散性问题。该技术使用两亲性表面活性剂来确定碳纳米材料的浮力密度差异,这取决于它们的物理和电子结构。纳米材料的浮力密度上的这些细微差别导致超速离心后它们在密度梯度内的平衡位置发生变化。通过使用不同的表面活性剂化学性质,可以生产在许多结构参数(例如直径,手性,电子类型(金属或半导体)和壁数)中单分散的碳纳米管。此外,还可以使用密度微分法来分离具有明确定义的原子层厚度的石墨烯。为了证明这些独特材料的实用性,我将单分散碳纳米材料并入了利用其增强的电子和光学特性的薄膜网络中。与多分散碳纳米材料薄膜相比,由高导电性金属碳纳米管,长双壁碳纳米管或密度细化的石墨烯组成的透明导体在更高的光学透射率水平下具有较低的薄层电阻。而且,显示出由半导体碳纳米管网络组成的薄膜场效应晶体管提供的性能参数超过了常规有机电子材料的性能参数。这些结果表明,单分散碳纳米材料是薄膜电子未来应用的有希望的候选者。

著录项

  • 作者

    Green, Alexander Arthur.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Electronics and Electrical.;Engineering Materials Science.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 224 p.
  • 总页数 224
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号